PurposeHistopathological imaging is widely used for the analysis and diagnosis of multiple diseases. Several methods have been proposed for the 3D reconstruction of pathological images, captured from thin sections of a given specimen, which get nonlinearly deformed due to the preparation process. The majority of the available methods for registering such images use the degree of matching of adjacent images as the criteria for registration, which can result in unnatural deformations of the anatomical structures. Moreover, most methods assume that the same staining is used for all images, when in fact multiple staining is usually applied in order to enhance different structures in the images.MethodsThis paper proposes a non-rigid 3D reconstruction method based on the assumption that internal structures on the original tissue must be smooth and continuous. Landmarks are detected along anatomical structures using template matching based on normalized cross-correlation (NCC), forming jagged shape trajectories that traverse several slices. The registration process smooths out these trajectories and deforms the images accordingly. Artifacts are automatically handled by using the confidence of the NCC in order to reject unreliable landmarks.ResultsThe proposed method was applied to a large series of histological sections from the pancreas of a KPC mouse. Some portions were dyed primarily with HE stain, while others were dyed alternately with HE, CK19, MT and Ki67 stains. A new evaluation method is proposed to quantitatively evaluate the smoothness and isotropy of the obtained reconstructions, both for single and multiple staining.ConclusionsThe experimental results show that the proposed method produces smooth and nearly isotropic 3D reconstructions of pathological images with either single or multiple stains. From these reconstructions, microanatomical structures enhanced by different stains can be simultaneously observed.
Hirofumi TSUZUKI†a) , Student Member, Mauricio KUGLER †b) , Nonmember, Susumu KUROYANAGI †c) , and Akira IWATA †d) , Members SUMMARY This paper presents a Complex-Valued Neural Networkbased sound localization method. The proposed approach uses two microphones to localize sound sources in the whole horizontal plane. The method uses time delay and amplitude difference to generate a set of features which are then classified by a Complex-Valued Multi-Layer Perceptron. The advantage of using complex values is that the amplitude information can naturally masks the phase information. The proposed method is analyzed experimentally with regard to the spectral characteristics of the target sounds and its tolerance to noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.