Summary:The relationship between a driver's glance pattern and corresponding head rotation is not clearly defined. Head rotation and eye glance data drawn from a study conducted by the Virginia Tech Transportation Institute in support of methods development for the Strategic Highway Research Program (SHRP 2) naturalistic driving study were assessed. The data were utilized as input to classifiers that predicted glance allocation to the road and the center stack. A predictive accuracy of 83% was achieved with Hidden Markov Models. Results suggest that although there are individual differences in head-eye correspondence while driving, head-rotation data may be a useful predictor of glance location. Future work needs to investigate the correspondence across a wider range of individuals, traffic conditions, secondary tasks, and areas of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.