Tissues from rhesus monkeys were screened by PCR for the presence of sequences homologous to known adeno-associated virus (AAV) serotypes 1-6. DNA spanning entire rep-cap ORFs from two novel AAVs, called AAV7 and AAV8, were isolated. Sequence comparisons among these and previously described AAVs revealed the greatest divergence in capsid proteins. AAV7 and AAV8 were not neutralized by heterologous antisera raised to the other serotypes. Neutralizing antibodies to AAV7 and AAV8 were rare in human serum and, when present, were low in activity. Vectors formed with capsids from AAV7 and AAV8 were generated by using rep and inverted terminal repeats (ITRs) from AAV2 and were compared with similarly constructed vectors made from capsids of AAV1, AAV2, and AAV5. Murine models of skeletal muscle and liver-directed gene transfer were used to evaluate relative vector performance. AAV7 vectors demonstrated efficiencies of transgene expression in skeletal muscle equivalent to that observed with AAV1, the most efficient known serotype for this application. In liver, transgene expression was 10-to 100-fold higher with AAV8 than observed with other serotypes. This improved efficiency correlated with increased persistence of vector DNA and higher number of transduced hepatocytes. The efficiency of AAV8 vector for liver-directed gene transfer of factor IX was not impacted by preimmunization with the other AAV serotypes. Vectors based on these novel, nonhuman primate AAVs should be considered for human gene therapy because of low reactivity to antibodies directed to human AAVs and because gene transfer efficiency in muscle was similar to that obtained with the best known serotype, whereas, in liver, gene transfer was substantially higher than previously described.A deno-associated viruses (AAV) have been isolated from a number of species, including primates (1). They belong to the Parvoviridae family and require helper viruses such as adenovirus to replicate. Six primate AAVs have been isolated, and five have been determined to be distinct serotypes based on antibody crossreactivity studies (2-8). AAV6 appears to be a recombinant between AAV1 and AAV2 (9). All primate AAVs were isolated initially as contaminants in preparations of adenoviruses except for AAV5, which was recovered from a human condylomatous wart (2-8). Seroepidemiologic studies indicate that AAV serotypes 2, 3, and 5 are endemic to humans whereas AAV4 primarily infects nonhuman primates (2-8, 10). The reservoir for AAV1 (and the associated AAV6 species) is unclear because it has not been primarily isolated from tissues and reactive antibodies exist in both humans and nonhuman primates (10-13).The isolation of a molecular clone for AAV2 in 1983 by Samulski et al. facilitated the development of recombinant vectors for somatic gene transfer (14). High titer stocks of AAV2-based vectors, devoid of all AAV ORFs, were created and evaluated in preclinical models of in vivo gene therapy. Several themes have emerged from these studies. In tissues such as liver, muscle, ret...
The potential for using Adeno-associated virus (AAV) as a vector for human gene therapy has stimulated interest in the Dependovirus genus. Serologic data suggest that AAV infections are prevalent in humans, although analyses of viruses and viral sequences from clinical samples are extremely limited. Molecular techniques were used in this study to successfully detect endogenous AAV sequences in 18% of all human tissues screened, with the liver and bone marrow being the most predominant sites. Sequence characterization of rescued AAV DNAs indicated a diverse array of molecular forms which segregate into clades whose members share functional and serologic similarities. One of the most predominant human clades is a hybrid of two previously described AAV serotypes, while another clade was found in humans and several species of nonhuman primates, suggesting a cross-species transmission of this virus. These data provide important information regarding the biology of parvoviruses in humans and their use as gene therapy vectors. Adeno-associated virus (AAV) is a member of the genusDependovirus, which lies within the Parvoviridae family (17). An interest in this family of viruses has been stimulated because of their potential use as gene transfer vectors (14).Little is known about the biology of AAV infections, although a significant proportion of humans and nonhuman primates have antibodies in their blood that react to some of the six existing serotypes of AAV (5, 7). This suggests that primates are hosts for infection with AAV, although the clinical sequelae of these infections have yet to be identified.The study of AAV has been limited to the previously described six serotypes, of which five were isolated as contaminants in laboratory preparations of adenoviruses (1,3,16). Our lack of understanding of AAV clinical infections has complicated the search for clinical isolates of the virus. Members of our laboratory recently described a strategy for evaluating latent or persistent AAV genomes from tissues of asymptomatic nonhuman primates through the use of PCR. These studies led to the discovery of two novel AAV serotypes, called AAV7 and AAV8, that have improved properties as vectors for gene therapy (10). In nonhuman primates, AAV sequences were quite prevalent and heterogenous (9).The goal of this study was to determine if latent AAVs exist in humans, and if so, to characterize their structural, serologic, and functional properties. MATERIALS AND METHODSCollection of primate tissues. Our sources of nonhuman primate tissues were described previously (9). Human tissues were collected under two independent IRB protocols approved by the Institutional Review Board of the University of Pennsylvania from either surgical procedures, postmortem examinations, or organ donors through two major national human tissue providers, the Cooperative Human Tissue Network and the National Disease Research Interchange. The human tissues used for this study were comprised of 18 different tissue types that included the colon, liver, lung, spl...
Adeno-associated viral (AAV) manufacturing at scale continues to hinder the application of AAV technology to gene therapy studies. Although scalable systems based on AAV-adenovirus, AAV-herpesvirus, and AAVbaculovirus hybrids hold promise for clinical applications, they require time-consuming generation of reagents and are not highly suited to intermediate-scale preclinical studies in large animals, in which several combinations of serotype and genome may need to be tested. We observed that during production of many AAV serotypes, large amounts of vector are found in the culture supernatant, a relatively pure source of vector in comparison with cell-derived material. Here we describe a high-yielding, recombinant AAV production process based on polyethylenimine (PEI)-mediated transfection of HEK293 cells and iodixanol gradient centrifugation of concentrated culture supernatant. The entire process can be completed in 1 week and the steps involved are universal for a number of different AAV serotypes. Process conditions have been optimized such that final purified yields are routinely greater than 1Â10 14 genome copies per run, with capsid protein purity exceeding 90%. Initial experiments with vectors produced by the new process demonstrate equivalent or better transduction both in vitro and in vivo when compared with small-scale, CsCl gradient-purified vectors. In addition, the iodixanol gradient purification process described effectively separates infectious particles from empty capsids, a desirable property for reducing toxicity and unwanted immune responses during preclinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.