This work considers the application of a mathematical model using mixed-integer linear programming for the vehicle routing problem. The model aims at establishing the distribution routes departing from a distribution center to each customer in order to reduce the transport cost associated with these routes. The study considers the use of a fleet of different capacities in the distribution network, which presents the special characteristic of a star network and which must meet different efficiency criteria, such as the fulfillment of each customer's demand, the vehicle carrying capacity, work schedule, and sustainable use of resources. The intention is to find the amount of equipment suitable to satisfy the demand, thus improving the level of customer service, optimizing the use of both human and economic resources in the distribution area, and leveraging maximum vehicle capacity usage. The MILP mixed-integer linear programming mathematical model of the case study is presented, as well as the corresponding numerical study.
The present work shows the basic concepts underlying flexible linear programming or linear programming with fuzzy constraints. The literature often presents this methodology related to inequality constraints. This works deals with a methodology for box and equality constrains; it shows how this type of problem is similar to parametric optimisation. Two examples are given to show the advantage of using this methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.