Cancer stem-like cells (SLC) resist conventional therapies, necessitating searches for SLC-specific targets. We established that cyclo-oxygenase(COX)-2 expression promotes human breast cancer progression by activation of the prostaglandin(PG)E-2 receptor EP4. Present study revealed that COX-2 induces SLCs by EP4-mediated NOTCH/WNT signaling. Ectopic COX-2 over-expression in MCF-7 and SKBR-3 cell lines resulted in: increased migration/invasion/proliferation, epithelialmesenchymal transition (EMT), elevated SLCs (spheroid formation), increased ALDH activity and colocalization of COX-2 and SLC markers (ALDH1A, CD44, b-Catenin, NANOG, OCT3/4, SOX-2) in spheroids. These changes were reversed with COX-2-inhibitor or EP4-antagonist (EP4A), indicating dependence on COX-2/EP4 activities. COX-2 over-expression or EP4-agonist treatments of COX-2-low cells caused up-regulation of NOTCH/WNT genes, blocked with PI3K/AKT inhibitors. NOTCH/WNT inhibitors also blocked COX-2/EP4 induced SLC induction. Microarray analysis showed up-regulation of numerous SLC-regulatory and EMT-associated genes. MCF-7-COX-2 cells showed increased mammary tumorigenicity and spontaneous multiorgan metastases in NOD/ SCID/IL-2Rc-null mice for successive generations with limiting cell inocula. These tumors showed up-regulation of VEGF-A/C/D, Vimentin and phospho-AKT, down-regulation of E-Cadherin and enrichment of SLC marker positive and spheroid forming cells. MCF-7-COX-2 cells also showed increased lung colonization in NOD/SCID/GUSB-null mice, an effect reversed with EP4-knockdown or EP4A treatment of the MCF-7-COX-2 cells. COX-2/EP4/ALDH1A mRNA expression in human breast cancer tissues were highly correlated with one other, more marked in progressive stage of disease. In situ immunostaining of human breast tumor tissues revealed colocalization of SLC markers with COX-2, supporting COX-2 inducing SLCs. High COX-2/EP4 mRNA expression was linked with reduced survival. Thus, EP4 represents a novel SLC-ablative target in human breast cancer. STEM CELLS 2016;34:2290-2305 SIGNIFICANCE STATEMENTThis study presents novel mechanistic findings that cyclo-oxygenase (COX)-2 induces stem-like cells (SLC) in human breast cancer by activation of the prostaglandin E-2 receptor EP4 leading to up-regulation of NOTCH/WNT via PI3K/AKT signaling pathways. COX-2 induced SLC properties resulting from EP4/PI3K/AKT activation were confirmed with mammary site transplants and lung colonization of COX-2 over-expressing cells in immune deficient mice, showing multi-organ metastasis. In human breast cancer tissues, (a) SLC markers were localized mostly to COX-21 cells; (b) COX-2/EP4/ALDH1A mRNAs were highly correlated with one another; and (c) high COX-2/EP4 expression were associated with reduced survival. We suggest that EP4 antagonist, which spare cardio-protective prostanoids, are better suited than COX-2 inhibitors for SLCreduction in this disease.
There is accumulating evidence indicating that aldehyde dehydrogenase (ALDH) activity selects for cancer cells with increased aggressiveness, capacity for sustained proliferation, and plasticity in primary tumors. However, emerging data also suggests an important mechanistic role for the ALDH family of isoenzymes in the metastatic activity of tumor cells. Recent studies indicate that ALDH correlates with either increased or decreased metastatic capacity in a cellular context-dependent manner. Importantly, it appears that different ALDH isoforms support increased metastatic capacity in different tumor types. This review assesses the potential of ALDH as biological marker and mechanistic mediator of metastasis in solid tumors. In many malignancies, most notably in breast cancer, ALDH activity and expression appears to be a promising marker and potential therapeutic target for treating metastasis in the clinical setting.
Previous studies indicate that breast cancer cells with high aldehyde dehydrogenase (ALDH) activity and CD44 expression (ALDHhiCD44+) contribute to metastasis and therapy resistance, and that ALDH1 correlates with poor outcome in breast cancer patients. The current study hypothesized that ALDH1 functionally contributes to breast cancer metastatic behavior and therapy resistance. Expression of ALDH1A1 or ALDH1A3 was knocked down in MDA-MB-468 and SUM159 human breast cancer cells using siRNA. Resulting impacts on ALDH activity (Aldefluor® assay); metastatic behavior and therapy response in vitro (proliferation/adhesion/migration/colony formation/chemotherapy and radiation) and extravasation/metastasis in vivo (chick choroiallantoic membrane assay) was assessed. Knockdown of ALDH1A3 but not ALDH1A1 in breast cancer cells decreased ALDH activity, and knockdown of ALDH1A1 reduced breast cancer cell metastatic behavior and therapy resistance relative to control (p < 0.05). In contrast, knockdown of ALDH1A3 did not alter proliferation, extravasation, or therapy resistance, but increased adhesion/migration and decreased colony formation/metastasis relative to control (p < 0.05). This is the first study to systematically examine the function of ALDH1 isozymes in individual breast cancer cell behaviors that contribute to metastasis. Our novel results indicate that ALDH1 mediates breast cancer metastatic behavior and therapy resistance, and that different enzyme isoforms within the ALDH1 family differentially impact these cell behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.