Valenzuela, M (Valenzuela, Mauricio). Univ Talca, Inst Matemat & Fis, Talca, ChileA local supersymmetric action for a (2+1)-dimensional system including gravity, the electromagnetic field and a Dirac spin-1/2 field is presented. The action is a Chern-Simons form for a connection of the OSp(2|2) group. All the fields enter as parts of the connection, that transforms in the adjoint representation of the gauge group. The system is off-shell invariant under local (gauge) supersymmetry. Although the supersymmetry is locally realized, there is no spin-3/2 gravitino, and is therefore not supergravity. The fields do not necessarily form supersymmetric doublets of equal mass, and moreover, the fermion may acquire mass through the coupling with geometry, while the bosons - the U(1) field and the spin connection - remain massless
Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ, ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell.
Universal vector wave equations allowing for a unified description of anyons, and also of usual bosons and fermions in the plane are proposed. The existence of two essentially different types of anyons, based on unitary and also on non-unitary infinite-dimensional half-bounded representations of the (2+1)D Lorentz algebra is revealed. Those associated with non-unitary representations interpolate between bosons and fermions. The extended formulation of the theory includes the previously known Jackiw-Nair (JN) and MajoranaDirac (MD) descriptions of anyons as particular cases, and allows us to compose bosons and fermions from entangled anyons. The theory admits a simple supersymmetric generalization, in which the JN and MD systems are unified in N = 1 and N = 2 supermultiplets. Two different non-relativistic limits of the theory are investigated. The usual one generalizes Lévy-Leblond's spin 1/2 theory to arbitrary spin, as well as to anyons. The second, "Jackiw-Nair" limit (that corresponds to Inönü-Wigner contraction with both anyon spin and light velocity going to infinity), is generalized to boson/fermion fields and interpolating anyons. The resulting exotic Galilei symmetry is studied in both the non-supersymmetric and supersymmetric cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.