This paper describes the application of an Artificial Immune System (AIS) to a real world problem: how to predict electricity fraud and theft. The field of Artificial Immune Systems is a recent branch of Computational Intelligence and has several possible applications, like pattern recognition, fault and anomaly detection, data analysis, agent-based systems and others. Although its potential, AIS still is not applied as much other techniques such as Artificial Neural Nets are. Various works compare AIS with other techniques using toy problems. But how much efficient is AIS when applied to a real world problem? How to model and adapt AIS to a specific domain problem? And how would be its efficiency compared to traditional algorithms? On the other hand, many companies perform activities that can be improved by Computational Intelligence, like predicting fraud. Electrical energy fraud and theft cause large financial loss to energy companies and indirectly to the whole society. This work applies AIS to predict electrical energy fraud and theft, analyzes efficiency and compares against other classifier methods. Data sample used to training and validation was provided by an electrical energy company. The results obtained showed that AIS has the best performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.