The cause of amyotrophic lateral sclerosis (ALS) is still unknown. A possible relationship between ALS and sport participation has been supposed, but never definitely demonstrated. We studied a cohort of 7325 male professional football players engaged by a football team from the Italian First or Second Division in the period 1970-2001. ALS cases were identified using different concurrent sources. Standardized morbidity ratios (SMRs) were calculated. During the 137,078 person-years of follow-up, five ALS cases were identified (mean age of onset, 43.4 years). Three cases had a bulbar onset, significantly more than expected (P = 0.003). Since the number of expected cases was 0.77, the overall SMR was 6.5 [95% confidence interval (CI), 2.1-15.1]. The SMR was significantly increased for an ALS onset before 49 years, but not for older subjects. A significant increase of the SMR was found in the periods 1980-1989 and 1990-2001, whereas no ALS case was found in the 1970-1979 period. A dose-response relationship between the duration of professional football activity and the risk of ALS was found (>5 years, 15.2, 95% CI, 3.1-44.4; < or =5 years, 3.5, 95% CI, 0.4-12.7). Our findings seem to indicate that playing professional football is a strong risk factor for ALS.
We previously found an increased risk for ALS in Italian professional soccer players actively engaged between 1970 and 2001 (n =7325). The present study extends previous work with a prospective follow-up of the original cohort to 2006 and investigates the risk of ALS in two other cohorts of professional athletes, basketball players (n =1973) and road cyclists (n =1701). Standardized morbidity ratios (SMRs) were calculated. Among soccer players three new cases of ALS were identified, reaching a total of eight ALS cases (mean age of onset, 41.6 years). The number of expected cases was 1.24, with an SMR of 6.45 (95% CI 2.78-12.70; p<0.00001). The risk of ALS was higher for careers lasting >5 years, for midfielders, and for players engaged after 1980. No basketball player and no cyclist developed ALS. This prospective extension of the Italian soccer players cohort survey confirms the highly significant risk of developing ALS, the young age of onset, the dose-effect risk and a predilection for midfielders. The absence of ALS cases in professional road cyclists and basketball players indicates that ALS is not related to physical activity per se.
Background: An adequate energy-protein intake (EPI) when combined with amino acid supplementation may have a positive impact on nutritional and metabolic status in patients with chronic heart failure (CHF). Methods and results: Thirty eight stable CHF patients (27 males, 73.5 ± 4 years; BMI 22.5 ± 1.4 kg/m 2 ), with severe depletion of muscle mass and were randomised to oral supplements of essential amino acids 8 g/day (EAA group; n = 21) or no supplements (controls; n = 17). All patients had adequate EPI (energy ≥ 30 kcal/kg; proteins N 1.1 g/kg). At baseline and 2-months after randomisation, the patients underwent metabolic (plasma lactate, pyruvate concentration; serum insulin level; estimate of insulin resistance by HOMA index), nutritional (measure of nitrogen balance), and functional (exercise test, walking test) evaluations.Body weight increased by N1 kg in 80% of supplemented patients (mean 2.96 kg) and in 30% of controls (mean 2.3 kg) (interaction b 0.05). Changes in arm muscle area, nitrogen balance, and HOMA index were similar between the two treatment groups.Plasma lactate and pyruvate levels increased in controls (p b 0.01 for both) but decreased in the supplemented group (p b 0.01 and 0.02 respectively). EAA supplemented patients but not controls improved both exercise output and peak oxygen consumption and walking test. Conclusions: Adequate EPI when combined with essential amino acid supplementation may improve nutritional and metabolic status in most muscle-depleted CHF patients.
Alzheimer's disease (AD) is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The primary cause and sequence of its progression are only partially understood but abnormalities in folding and accumulation of insoluble proteins such as p-amyloid and Tau-protein are both associated with the pathogenesis of AD. Mitochondria play a crucial role in cell survival and death, and changes in mitochondrial structure and/or function are related to many human diseases. Increasing evidence suggests that compromised mitochondrial function contributes to the aging process and thus may increase the risk of AD. Dysfunctional mitochondria contribute to reactive oxygen species which can lead to extensive macromolecule oxidative damage and the progression of amyloid pathology. Oxidative stress and amyloid toxicity leave neurons chemically vulnerable. The mitochondrial toxicity induced by p-amyloid is still not clear but may include numerous mechanisms, such as the increased permeability of mitochondrial membranes, the disruption of calcium homeostasis, the alteration of oxidative phosphorylation with a consequent overproduction of reactive oxygen species. Other mechanisms have been associated with the pathophysiology of AD. Inflammatory changes are observed in AD brain overall, particularly at the amyloid deposits, which are rich in activated microglia. Once stimulated, the microglia release a wide variety of pro-inflammatory mediators including cytokines, complement components and free radicals, all of which potentially contribute to further neuronal dysfunction and eventually death. Clinically, novel approaches to visualize early neuroinflammation in the human brain are needed to improve the monitoring and control of therapeutic strategies that target inflammatory and other pathological mechanisms. Similarly, there is growing interest in developing agents that modulate mitochondrial function.Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by a progressive deterioration of cognitive functions with consequent reduction of memory, associated with a decrease in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.