Colorectal cancer (CRC) ranks as the most frequent carcinoma worldwide. CRC patients show strong prognostic differences and responses to treatment, and 20% have incurable metastatic disease at diagnosis. We considered it essential to investigate mechanisms that control cellular regulatory networks, such as the miRNA–mRNA interaction, known to be involved in cancer pathogenesis. We conducted a human miRNome analysis by TaqMan low density array, comparing CRC to normal colon tissue (NCT, and experimentally identified gene targets of miRNAs deregulated, by anti-correlation analysis, with the CRC whole-transcriptome profile obtained from RNASeq experiments. We identified an integrated signature of 20 deregulated miRNAs in CRC. Enrichment analyses of the gene targets controlled by these miRNAs brought to light 25 genes, members of pathways known to lead to cell growth and death (CCND1, NKD1, FZD3, MAD2L1, etc.), such as cell metabolism (ACSL6, PRPS1-2). A screening of prognosis-mediated miRNAs underlined that the overexpression of miR-224 promotes CRC metastasis, and is associated with high stage and poor survival. These findings suggest that the biology and progression of CRC depend on deregulation of multiple miRNAs that cause a complex dysfunction of cellular molecular networks. Our results have further established miRNA–mRNA interactions and defined multiple pathways involved in CRC pathogenesis.
Colorectal cancer (CRC) is a leading cause of cancer death worldwide and about 20% is metastatic at diagnosis and untreatable. The anti-EGFR therapy in metastatic patients is led by the presence of KRAS-mutations in tumor tissue. KRAS-wild-type CRC patients showed a positive response rate of about 70% to cetuximab or panitumumab combined with chemotherapy. MiRNAs are promising markers in oncology and could improve our knowledge on pathogenesis and drug resistance in CRC patients. This class of molecules represents an opportunity for the development of miRNA-based strategies to overcome the ineffectiveness of anti-EGFR therapy. We performed an integrative analysis of miRNA expression profile between KRAS-mutated CRC and KRAS-wildtype CRC and paired normal colic tissue (NCT). We revealed an overexpression of miR-425-5p in KRAS-mutated CRC compared to KRAS-wild type CRC and NCT and demonstrated that miR-425-5p exerts regulatory effects on target genes involved in cellular proliferation, migration, invasion, apoptosis molecular networks. These epigenetic mechanisms could be responsible of the strong aggressiveness of KRAS-mutated CRC compared to KRAS-wildtype CRC. We proved that some miR-425-5p targeted genes are involved in EGFR tyrosine kinase inhibitor resistance pathway, suggesting that therapies based on miR-425-5p may have strong potential in targeting KRAS-driven CRC. Moreover, we demonstrated a role in the oncogenesis of miR-31-5p, miR-625-5p and miR-579 by comparing CRC versus NCT. Our results underlined that miR-425-5p might act as an oncogene to participate in the pathogenesis of KRAS-mutated CRC and contribute to increase the aggressiveness of this subcategory of CRC, controlling a complex molecular network.
The human genome contains remnants of ancestral retroviruses now endogenously transmitted, called human endogenous retroviruses (HERVs). HERVs can be variably expressed, and both beneficial and detrimental effects have described. This review focuses on the MSRV and syncytin-1 HERV-W elements in relationship to neurodegeneration in view of their neuro-pathogenic and immune-pathogenic properties. Multiple sclerosis (MS) and a neurodegenerative disease (neuroAIDS) are reported in this review. In vivo studies in patients and controls for molecular epidemiology and follow-up studies are reviewed, along with in vitro cellular studies of the effects of treatments and of molecular mechanisms. HERV-W/MSRV has been repeatedly found in MS patients (in blood, spinal fluid, and brain samples), and MRSV presence/load strikingly parallels MS stages and active/remission phases, as well as therapy outcome. The DNA of MS patients has increased MSRVenv copies, while syncytin-1 copies are unchanged in controls. Presence of MSRV in the spinal fluid predicted the worst MS progression, ten years in advance. The Epstein-Barr virus (EBV) activates HERV-W/MSRV both in vitro and in vivo. With respect to neuroAIDS, the HIV transactivator of transcription (Tat) protein activates HERV-W/MSRV in monocytes/macrophages and astrocytes indirectly by interaction with TLR4 and induction of TNF. HERV-W/MSRV can be considered a biomarker for MS behavior and therapy outcome. Regarding MS pathogenesis, we postulate the possibility for EBV of an initial trigger of future MS, years later, and for MSRV of a direct role of effector of neuropathogenesis during MS. Additionally, HERV-W/MSR/syncytin-1 activation by HIV Tat could contribute to the HIV-related neurodegeneration.
Natalizumab is effective against multiple sclerosis (MS), but is associated with progressive multifocal leukoencephalopathy (PML), fatal disease caused by the JCV polyomavirus. The SF2/ASF (splicing factor2/alternative splicing factor) inhibits JCV in glial cells. We wondered about SF2/ASF modulation in the blood of natalizumab-treated patients and if this could influence JCV reactivation. Therefore, we performed a longitudinal study of MS patients under natalizumab, in comparison to patients under fingolimod and to healthy blood donors. Blood samples were collected at time intervals. The expression of SF2/ASF and the presence and expression of JCV in PBMC were analyzed. A bell-shaped regulation of SF2/ASF was observed in patients treated with natalizumab, increased in the first year of therapy, and reduced in the second one, while slightly changed, if any, in patients under fingolimod. Notably, SF2/ASF was up-regulated, during the first year, only in JCV DNA-positive patients, or with high anti-JCV antibody response; the expression of the JCV T-Ag protein in circulating B cells was inversely related to SF2/ASF protein expression. The SF2/ASF reduction, parallel to JCV activation, during the second year of therapy with natalizumab, but not with fingolimod, may help explain the increased risk of PML after the second year of treatment with natalizumab, but not with fingolimod. We propose that SF2/ASF has a protective role against JCV reactivation in MS patients. This study suggests new markers of disease behavior and, possibly, help in re-evaluations of therapy protocols.
Treatment of HIV-1 ADA -infected CD34+ NSG-humanized mice with long-acting ester prodrugs of cabotegravir, lamivudine, and abacavir in combination with native rilpivirine was followed by dual CRISPR-Cas9 C-C chemokine receptor type five (CCR5) and HIV-1 proviral DNA gene editing. This led to sequential viral suppression, restoration of absolute human CD4 + T cell numbers, then elimination of replication-competent virus in 58% of infected mice. Dual CRISPR therapies enabled the excision of integrated proviral DNA in infected human cells contained within live infected animals. Highly sensitive nucleic acid nested and droplet digital PCR, RNAscope, and viral outgrowth assays affirmed viral elimination. HIV-1 was not detected in the blood, spleen, lung, kidney, liver, gut, bone marrow, and brain of virus-free animals. Progeny virus from adoptively transferred and CRISPR-treated virus-free mice was neither detected nor recovered. Residual HIV-1 DNA fragments were easily seen in untreated and viral-rebounded animals. No evidence of off-target toxicities was recorded in any of the treated animals. Importantly, the dual CRISPR therapy demonstrated statistically significant improvements in HIV-1 cure percentages compared to single treatments. Taken together, these observations underscore a pivotal role of combinatorial CRISPR gene editing in achieving the elimination of HIV-1 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.