Experiments involving language-related processes tended to show larger decreases than nonlanguage experiments. This trend mainly reflected blood flow increases at certain areas in the passive conditions of the language experiments (relative to a fixation control in which no task stimulus was present) and slight blood flow decreases in the passive conditions of the nonlanguage experiments. When the active tasks were referenced to the fixation condition, the overall size of blood flow decreases in language and nonlanguage tasks were the same,
Positron emission tomography (PET) was used to identify the neural systems involved in shifting spatial attention to visual stimuli in the left or right visual field along foveofugal or foveocentric directions. Psychophysical evidence indicated that stimuli at validly cued locations were responded to faster than stimuli at invalidly cued locations. Reaction times to invalid probes were faster when they were presented in the same than in the opposite direction of an ongoing attention movement. PET evidence indicated that superior parietal and superior frontal cortex were more active when attention was shifted to peripheral locations than when maintained at the center of gaze. Both regions encoded the visual field and not the direction of an attention shift. In the right superior parietal lobe, two distinct responses were localized for attention to left and right visual field. Finally, the superior parietal region was active when peripheral locations were selected on the basis of cognitive or sensory cues independent of the execution of an overt response. The frontal region was active only when responses were made to stimuli at selected peripheral locations. These findings indicate that parietal and frontal regions control different aspects of spatial selection. The functional asymmetry in superior parietal cortex may be relevant for the pathophysiology of unilateral neglect.
Positron emission tomography (PET) was used to identify the neural systems involved in discriminating the shape, color, and speed of a visual stimulus under conditions of selective and divided attention. Psychophysical evidence indicated that the sensitivity for discriminating subtle stimulus changes in a same-different matching task was higher when subjects selectively attended to one attribute than when they divided attention among the attributes. PET measurements of brain activity indicated that modulations of extrastriate visual activity were primarily produced by task conditions of selective attention. Attention to speed activated a region in the left inferior parietal lobule. Attention to color activated a region in the collateral sulcus and dorsolateral occipital cortex, while attention to shape activated collateral sulcus (similarly to color), fusiform and parahippocampal gyri, and temporal cortex along the superior temporal sulcus. Outside the visual system, selective and divided attention activated nonoverlapping sets of brain regions. Selective conditions activated globus pallidus, caudate nucleus, lateral orbitofrontal cortex, posterior thalamus/colliculus, and insular-premotor regions, while the divided condition activated the anterior cingulate and dorsolateral prefrontal cortex. The results in the visual system demonstrate that selective attention to different features modulates activity in distinct regions of extrastriate cortex that appear to be specialized for processing the selected feature. The disjoint pattern of activations in extravisual brain regions during selective- and divided-attention conditions also suggests that preceptual judgements involve different neural systems, depending on attentional strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.