This study proposes a new metric to process dual-polarimetric coherent and incoherent synthetic aperture radar (SAR) data for coastline extraction purposes. The metric, based on the correlation between co- and cross-polarized channels, allows discriminating land from sea in an unsupervised way. Then, simple image processing is adopted to extract continuous coastline from the binary image. Experiments, undertaken on multipolarization C- (RadarSAT-2 and Sentinel-1) and X-band (Cosmo-SkyMed) SAR data collected in South of Italy together with Global Positioning System ground truth, confirm the soundness of the method which is shown to be both effective (a whole SAR scene is processed in seconds) and accurate (the mean error is less than 5 and 7 pixels for RadarSAT-2 and CosmoSkyMed, respectively)
Sea wind and sea state estimation by synthetic aperture radar (SAR) measurements is a topic of relevance both on the scientific and user side. The new European Space Agency (ESA) Sentinel-1 constellation is meant to support marine studies and ensure high-quality data. In this paper, we investigate the azimuth cut-off (λC) sea wind speed and significant wave height retrieval approach by taking benefit of two sets of multi-look SAR images with incidence angles varying from 20° to 45°. The images have been co-located with sea surface wind measurements acquired by the scatterometer onboard the Chinese satellite HY-2A (HSCAT) and with the European Centre for Medium Range Weather Forecast (ECMWF) operational model output. This study is meant to analyse both the empirical dependency of SAR (λC) on significant wave height (HC) and wind speed (U). Several fitting geophysical model functions ((λC)-GMFs) are proposed and discussed. The results show that (λC)is strongly correlated with the significant wave height in all sea state conditions, while the correlation with the wind speed is only high for fully developed sea states. The azimuth cut-off based significant wave height retrievals are compared with independent National Data Buoy Centre (NDBC) network observations, showing a root mean square difference of about 0.5 m
In this paper, a theoretical and experimental analysis of polarimetric synthetic aperture radar (SAR) architectures is undertaken for sea oil slick observation purposes. Reference is made to the conventional full-polarimetric (FP) SAR that is here contrasted with new-generation polarimetric SAR architectures, known as compact-polarimetric (CP) SAR. Two CP modes are considered, i.e., the hybrid-polarity and π/4 modes, whose measurements are emulated from actual L- and C-band FP SAR data. Polarimetric sea surface scattering is predicted according to an extended version of the Bragg scattering model (X-Bragg) in order to point out the differences exhibited between FP and CP SAR architectures and among CP SAR modes. Theoretical predictions are then contrasted with experiments undertaken on actual polarimetric SAR data collected over well-known oil slicks and weak-damping surfactants. Results confirm model prediction, showing that differences mainly apply when polarimetric features are estimated over slick-free sea surface using different SAR architectures, with the π/4 mode behaving closer to FP SAR. Although CP SAR architectures measure only a subset of the FP information content, they represent an interesting operational alternative for both detecting oil slicks and discriminating them from weak-damping surfactants
The reverberating chamber (RC) is employed to physically emulate line-of-sight (LOS) propagation channels and to test the quality of a digital transmission. Use of different absorber configurations is able to generate various LOS propagation channels. The LOS channels are objectively characterized by the Rician K factor and results show that K is not generally dependent only on the number of absorbers but also on their configuration. Experiments are accomplished at the electrically large mode-stirred RC of the Universita di Napoli Parthenope, formerly Istituto Universitario Navale (IUN) and a global system for mobile communications (GSM) digital signal is used
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.