Thick epitaxial multilayer silicene films with a √3 × √3R(30°) surface structure show only mild surface oxidation after 24 h in air, as measured by Auger electron spectroscopy. X-ray diffraction and Raman spectroscopy measurements performed in air without any protective capping, as well as, for comparison, with a thin Al2O3 cap, showed the (002) reflection and the G, D and 2D Raman structures, which are unique fingerprints of thick multilayer silicene.
The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.
Copper colloidal nanoparticles are obtained by laser ablation in aqueous solutions of ligands by nanosecond laser pulses at 532 and 1064 nm and examined by localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectroscopy, along with transmission electron microscopy (TEM) and zeta potential measurements. This fabrication method, besides providing SERSactive substrates without spectral interferences of reagents, as it generally occurs for the chemical reduction of metal ions, allows obtaining colloidal suspensions which are stable in time because the copper particles are capped by ligand molecules as long as they are formed by laser ablation. This prevents aggregation among metal nanoparticles and probably reduces overall oxidation of the copper surface.
The adsorption of 1,2,3-triazole on silver and gold colloidal nanoparticles is studied by means of surface enhanced Raman scattering (SERS). Further information about the adsorption mechanism on silver is obtained by recording the normal Raman spectra of the Ag(I)/1,2,3-triazole coordination compound. SERS data are interpreted with the help of density functional theoretical calculations of models of the ligand bound to silver or gold surface adatoms. 1,2,3-Triazole interacts with both silver and gold substrates in its anionic form through the lone pairs of the N 1 and N 3 atoms with a tilted orientation with respect to the metal surface.
Surface-enhanced Raman scattering (SERS) of adenine-containing microRNA chains has been obtained by adsorption on roughened silver substrates. The spectral features of all of these samples appear dominated by the bands of adenine. By comparison with the SERS spectra of adenine and adenosine obtained on the same substrates, along with DFT calculations on the interaction sites of adenine and adenosine with silver, inferences are discussed about the structural arrangement of the microRNA chains with respect to the metal surface. This approach gives suitable guidelines in order to investigate the adsorption of complex biomolecules on metal substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.