Cubic Li7La3Zr2O12 (LLZO) garnets are exceptionally well suited to be used as solid electrolytes or protecting layers in "Beyond Li-ion Battery" concepts. Unfortunately, cubic LLZO is not stable at room temperature (RT) and has to be stabilized by supervalent dopants. In this study we demonstrate a new possibility to stabilize the cubic phase at RT via substitution of Zr(4+) by Mo(6+). A Mo(6+) content of 0.25 per formula unit (pfu) stabilizes the cubic LLZO phase, and the solubility limit is about 0.3 Mo(6+) pfu. Based on the results of neutron powder diffraction and Raman spectroscopy, Mo(6+) is located at the octahedrally coordinated 16a site of the cubic garnet structure (space group Ia-3d). Since Mo(6+) has a smaller ionic radius compared to Zr(4+) the lattice parameter a0 decreases almost linearly as a function of the Mo(6+) content. The highest bulk Li-ion conductivity is found for the 0.25 pfu composition, with a typical RT value of 3.4 × 10(-4) S cm(-1). An additional significant resistive contribution originating from the sample interior (most probably from grain boundaries) could be identified in impedance spectra. The latter strongly depends on the prehistory and increases significantly after annealing at 700 °C in ambient air. Cyclic voltammetry experiments on cells containing Mo(6+) substituted LLZO indicate that the material is stable up to 6 V.
We report on a quick, simple, and cost-effective solution-phase approach to prepare centimeter-sized morphology-graded vertically aligned Si nanowire arrays. Gradients in the nanowire diameter and shape are encoded through the macroscale substrate via a "dip-etching" approach, where the substrate is removed from a KOH etching solution at a constant rate, while morphological control at the nanowire level is achieved via sequential metalassisted chemical etching and KOH etching steps. This combined approach provides control over light absorption and reflection within the nanowire arrays at both the macroscale and nanoscale, as shown by UV−vis spectroscopy and numerical three-dimensional finite-difference time-domain simulations. Macroscale morphology gradients yield arrays with gradually changing optical properties. Nanoscale morphology control is demonstrated by synthesizing arrays of bisegmented nanowires, where the nanowires are composed of two distinct segments with independently controlled lengths and diameters. Such nanowires are important to tailor light−matter interactions in functional devices, especially by maximizing light absorption at specific wavelengths and locations within the nanowires.
The solvation structure around the Li + ion in a mixed cyclic/linear carbonate solution, an important factor for the performance of lithium-based rechargeable batteries, is examined by measuring and analyzing the noncoincidence effect observed for the CO stretching Raman band. This technique has the advantage of perceiving relative distances and orientations of solvent molecules clustering around an ion in the first solvation shell and, hence, of developing information on the solvation structure along the wavenumber axis rather than along the intensity axis of the spectra. It is shown that, taking the solution of Li + ClO 4 − in the 1:1 mixed solvent of propylene carbonate (PC) and diethyl carbonate (DEC) as an example case, the Li + ion is preferentially solvated by PC molecules [primarily as (PC) 3 (DEC) 1 Li + ] and is totally protected from direct interaction (contact ion pairing) with the ClO 4 − ion. The solvation structures in neat PC and neat DEC solvents are also discussed.I on solvation is a central, and still an open, issue in many chemical, biochemical, and electrochemical processes. One of those important processes would be the functioning of lithium-based rechargeable batteries. 1−3 Their performance depends on the electrode materials and processes on the one hand and on the charge carrier concentration and mobility in the electrolyte solution on the other hand. With regard to the latter, high charge density of the Li + ion should be sufficiently stabilized, and at the same time, the electrolyte solution should have sufficiently high fluidity. A usual practice to make these two factors compatible is to employ a mixed solvent, consisting of a highly dipolar liquid such as a cyclic carbonate stabilizing the high charge density (but highly viscous) and a liquid of lower viscosity such as a linear carbonate (being less dipolar). Quite often ethylene or propylene carbonate (with dielectric constant ε = 65−90 and viscosity η ≅ 2.5 cP, abbreviated as EC and PC) is used for the former, and dimethyl, diethyl, or ethyl methyl carbonate (with ε ≅ 3 and η = 0.6−0.9 cP, abbreviated as DMC, DEC, and EMC) is used for the latter.The solvation structure around the Li + ion, especially that of the first solvation shell, has been suggested to be important for the interphase chemistry on the electrodes. 4−6 The use of a mixed solvent introduces a complexity in this. One controversial subject in this regard is the presence/absence of the preferential solvation and (if present) its nature for the Li + ion in a mixed cyclic/linear carbonate solution. 7−19 On the basis of electrospray ionization mass spectroscopy (ESI-MS), 7,8 it has been suggested that there is a strong preferential solvation for Li + in EC/EMC, with the Li + (EC) 2 species as the main ingredient. 7 The same type of preferential solvation (i.e., with a higher population of cyclic carbonate around the ion than in the bulk) has also been suggested in some NMR studies 9−11 but with a much larger total solvation number (≥6). 9,20 It has been argued that some...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.