Archaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas. Our data reveal 18 major haplogroups (A-R) with radiation times that are mostly confined to the Neolithic and later periods and place the root of the phylogeny corresponding to the Ancestral Mare Mitogenome at ∼130-160 thousand years ago. All haplogroups were detected in modern horses from Asia, but F was only found in E. przewalskii-the only remaining wild horse. Therefore, a wide range of matrilineal lineages from the extinct E. ferus underwent domestication in the Eurasian steppes during the Eneolithic period and were transmitted to modern E. caballus breeds. Importantly, now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to (i) classify well-preserved ancient remains, (ii) (re)assess the haplogroup variation of modern breeds, including Thoroughbreds, and (iii) evaluate the possible role of mtDNA backgrounds in racehorse performance.horse mitochondrial genome | mtDNA haplogroups | origin of Equus caballus | Przewalski's horse | animal domestication
Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.
Background: Adequate stress response is a critical factor during athlete horses' training and is central to our capacity to obtain better performances while safeguarding animal welfare.
BackgroundCopy number variants (CNVs) have been shown to play an important role in genetic diversity of mammals and in the development of many complex phenotypic traits. The aim of this study was to perform a standard comparative evaluation of CNVs in horses using three different CNV detection programs and to identify genomic regions associated with body size in horses.ResultsAnalysis was performed using the Illumina Equine SNP50 genotyping beadchip for 854 horses. CNVs were detected by three different algorithms, CNVPartition, PennCNV and QuantiSNP. Comparative analysis revealed 50 CNVs that affected 153 different genes mainly involved in sensory perception, signal transduction and cellular components. Genome-wide association analysis for body size showed highly significant deleted regions on ECA1, ECA8 and ECA9. Homologous regions to the detected CNVs on ECA1 and ECA9 have also been shown to be correlated with human height.ConclusionsComparative analysis of CNV detection algorithms was useful to increase the specificity of CNV detection but had certain limitations dependent on the detection tool. GWAS revealed genome-wide associated CNVs for body size in horses.
BackgroundThe climatic and cultural diversity of the Italian Peninsula triggered, over time, the development of a great variety of horse breeds, whose origin and history are still unclear. To clarify this issue, analyses on phenotypic traits and genealogical data were recently coupled with molecular screening.MethodologyTo provide a comprehensive overview of the horse genetic variability in Italy, we produced and phylogenetically analyzed 407 mitochondrial DNA (mtDNA) control-region sequences from ten of the most important Italian riding horse and pony breeds: Bardigiano, Esperia, Giara, Lipizzan, Maremmano, Monterufolino, Murgese, Sarcidano, Sardinian Anglo-Arab, and Tolfetano. A collection of 36 Arabian horses was also evaluated to assess the genetic consequences of their common use for the improvement of some local breeds.ConclusionsIn Italian horses, all previously described domestic mtDNA haplogroups were detected as well as a high haplotype diversity. These findings indicate that the ancestral local mares harbored an extensive genetic diversity. Moreover, the limited haplotype sharing (11%) with the Arabian horse reveals that its impact on the autochthonous mitochondrial gene pools during the final establishment of pure breeds was marginal, if any. The only significant signs of genetic structure and differentiation were detected in the geographically most isolated contexts (i.e. Monterufolino and Sardinian breeds). Such a geographic effect was also confirmed in a wider breed setting, where the Italian pool stands in an intermediate position together with most of the other Mediterranean stocks. However, some notable exceptions and peculiar genetic proximities lend genetic support to historical theories about the origin of specific Italian breeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.