The study of the preparation phase of large earthquakes is essential to understand the physical processes involved, and potentially useful also to develop a future reliable short-term warning system. Here we analyse electron density and magnetic field data measured by Swarm three-satellite constellation for 4.7 years, to look for possible in-situ ionospheric precursors of large earthquakes to study the interactions between the lithosphere and the above atmosphere and ionosphere, in what is called the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC). We define these anomalies statistically in the whole space-time interval of interest and use a Worldwide Statistical Correlation (WSC) analysis through a superposed epoch approach to study the possible relation with the earthquakes. We find some clear concentrations of electron density and magnetic anomalies from more than two months to some days before the earthquake occurrences. Such anomaly clustering is, in general, statistically significant with respect to homogeneous random simulations, supporting a LAIC during the preparation phase of earthquakes. By investigating different earthquake magnitude ranges, not only do we confirm the well-known Rikitake empirical law between ionospheric anomaly precursor time and earthquake magnitude, but we also give more reliability to the seismic source origin for many of the identified anomalies.
Earthquakes are the most energetic phenomena in the lithosphere: their study and comprehension are greatly worth doing because of the obvious importance for society. Geosystemics intends to study the Earth system as a whole, looking at the possible couplings among the different geo-layers, i.e., from the earth’s interior to the above atmosphere. It uses specific universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms (e.g., ground, marine or satellite observations). Its main objective is to understand the particular phenomenon of interest from a holistic point of view. Central is the use of entropy, together with other physical quantities that will be introduced case by case. In this paper, we will deal with earthquakes, as final part of a long-term chain of processes involving, not only the interaction between different components of the Earth’s interior but also the coupling of the solid earth with the above neutral or ionized atmosphere, and finally culminating with the main rupture along the fault of concern. Particular emphasis will be given to some Italian seismic sequences.
Nowadays, the possibility that medium-large earthquakes could produce some electromagnetic ionospheric disturbances during their preparatory phase is controversial in the scientific community. Some previous works using satellite data from DEMETER, Swarm and, recently, CSES provided several pieces of evidence supporting the existence of such precursory phenomena in terms of single case studies and statical analyses. In this work, we applied a Worldwide Statistical Correlation approach to M5.5+ shallow earthquakes using the first 8 years of Swarm(i.e., from November 2013 to November 2021) magnetic field and electron density signals in order to improve the significance of previous statistical studies and provide some new results on how earthquake features could influence ionospheric electromagnetic disturbances. We implemented new methodologies based on the hypothesis that the anticipation time of anomalies of larger earthquakes is usually longer than that of anomalies of smaller magnitude. We also considered the signal’s frequency to introduce a new identification criterion for the anomalies. We find that taking into account the frequency can improve the statistical significance (up to 25% for magnetic data and up to 100% for electron density). Furthermore, we noted that the frequency of the Swarm magnetic field signal of possible precursor anomalies seems to slightly increase as the earthquake is approaching. Finally, we checked a possible relationship between the frequency of the detected anomalies and earthquake features. The earthquake focal mechanism seems to have a low or null influence on the frequency of the detected anomalies, while the epicenter location appears to play an important role. In fact, land earthquakes are more likely to be preceded by slower (lower frequency) magnetic field signals, whereas sea seismic events show a higher probability of being preceded by faster (higher frequency) magnetic field signals.
On 20 December 2021, after six quiet years, the Hunga Tonga–Hunga Ha’apai volcano erupted abruptly. Then, on 15 January 2022, the largest eruption produced a plume well registered from satellites and destroyed the volcanic cone previously formed in 2015, connecting the two islands. We applied a multi-parametric and multi-layer study to investigate all the possible pre-eruption signals and effects of this volcanic activity in the lithosphere, atmosphere, and ionosphere. We focused our attention on: (a) seismological features considering the eruption in terms of an earthquake with equivalent energy released in the lithosphere; (b) atmospheric parameters, such as skin and air temperature, outgoing longwave radiation (OLR), cloud cover, relative humidity from climatological datasets; (c) varying magnetic field and electron density observed by ground magnetometers and satellites, even if the event was in the recovery phase of an intense geomagnetic storm. We found different precursors of this unique event in the lithosphere, as well as the effects due to the propagation of acoustic gravity and pressure waves and magnetic and electromagnetic coupling in the form of signals detected by ground stations and satellite data. All these parameters and their detailed investigation confirm the lithosphere–atmosphere–ionosphere coupling (LAIC) models introduced for natural hazards such as volcano eruptions and earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.