Nitrogen leaching in croplands is a worldwide problem with implications both on human health and on the environment. Efforts should be taken to increase nutrient use efficiency and minimize N losses from terrestrial to water ecosystems. Soil-applied biochar has been reported to increase soil fertility and decrease nutrient leaching in tropical soils and under laboratory conditions. Our objective was to evaluate the effect of biochar addition on short-term N leaching from A soil horizon in a mature apple orchard growing on subalkaline soils located in the Po Valley (Italy). In spring 2009, 10 Mg of biochar per hectare was incorporated into the surface 20-cm soil layer by soil plowing. Cumulative nitrate (NO) and ammonium (NH) leaching was measured in treated and control plots 4 mo after the addition of biochar and the following year by using ion-exchange resin lysimeters installed below the plowed soil layer. Cumulative NO leaching was not affected by biochar after 4 mo, whereas in the following year it was significantly ( < 0.05) reduced by 75% over the control (from 5.5 to 1.4 kg ha). Conversely, NH leaching was very low and unaffected by soil biochar treatment. The present study shows that soil biochar addition can significantly decrease short-term nitrate leaching from the surface layer of a subalkaline soil under temperate climatic conditions.
As studies on biochar stability in field conditions are very scarce, the carbon sequestration potential of biochar application to agricultural soils remains uncertain. This study assessed the stability of biochar in field conditions, the effect of plant roots on biochar stability and the effect of biochar on original soil organic matter (SOM) decomposition in two (Italy and United Kingdom) short rotation coppice systems (SRCs), using continuous soil respiration monitoring and periodic isotopic (d 13 CO 2 ) measurements. When root growth was excluded, only 7% and 3% of the biochar carbon added was decomposed after 245 and 164 days in Italy and United Kingdom sites respectively. In the presence of roots, this percentage was increased to 9% and 8%, suggesting a small positive priming effect of roots on biochar decomposition. A decreased decomposition rate of original SOM was observed at both sites after biochar incorporation, suggesting a protective effect of biochar on SOM. This study supports the carbon sequestration potential of biochar and highlights the role of root activity on biochar decomposition, questioning the applicability of laboratory incubation studies to assess biochar stability.
Sustainable management of mineral nutrition in vineyards, as well as in other fruit plantations, should aim at exploiting the use of internal sources of nutrients, in order to reduce the need for external nutrient inputs. In this paper we explore the potential of the grassed alleys to provide nutrients to the vines. We followed for one vegetative season the decomposition of ryegrass and clover, frequently present as floor vegetation in vineyards, using litter bags filled with 15 N-enriched grass material. In addition, we quantified the amount of nitrogen (N) transferred from the decomposing litter to field-grown grapevines. Ryegrass and clover had a relatively rapid decomposition rate, with a loss of C approaching 80% in only 16 weeks. The release of nutrients was particularly fast for potassium (95% in 16 weeks) followed by nitrogen (80%), calcium (70-80%), phosphorous (65-85%), magnesium (70-75%), and sulfur (60-70%). In spite of the rapid release of N from decomposing material, the N uptake by grapevines was on average less than 4% of the initial amount of N present in the litter of ryegrass and clover. Even if N release during the decomposition of mowed perennial ryegrass and white clover little contributed to the N nutrition of grapevine in the same growing season, most N from mowed grassed was still recovered in the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.