Genome stability requires one, and only one, DNA duplication at each S phase. The mechanisms preventing origin firing on newly replicated DNA are well documented, but much less is known about the mechanisms controlling the spacing of initiation events(2,3), namely the completion of DNA replication. Here we show that origin use in Chinese hamster cells depends on both the movement of the replication forks and the organization of chromatin loops. We found that slowing the replication speed triggers the recruitment of latent origins within minutes, allowing the completion of S phase in a timely fashion. When slowly replicating cells are shifted to conditions of fast fork progression, although the decrease in the overall number of active origins occurs within 2 h, the cells still have to go through a complete cell cycle before the efficiency specific to each origin is restored. We observed a strict correlation between replication speed during a given S phase and the size of chromatin loops in the next G1 phase. Furthermore, we found that origins located at or near sites of anchorage of chromatin loops in G1 are activated preferentially in the following S phase. These data suggest a mechanism of origin programming in which replication speed determines the spacing of anchorage regions of chromatin loops, that, in turn, controls the choice of initiation sites.
Selection of active origins and regulation of interorigin spacing are poorly understood in mammalian cells. Using tricolor analysis of combed DNA molecules, we studied an amplified locus containing the known origin, oriGNAI3. We visualized replication firing events at this and other discrete regions and established a strict correlation between AT richness and initiation sites. We found that oriGNAI3 is the prominent origin of the domain, the firing of which correlates with silencing of neighboring sites and establishes large interorigin distances. We demonstrate that cells reversibly respond to a reduction in nucleotide availability by slowing the rate of replication fork progression; in addition, the efficiency of initiation at oriGNAI3 is lowered while other normally dormant origins in the region are activated, which results in an overall increase in the density of initiation events. Thus, nucleotide pools are involved in the specification of active origins, which in turn defines their density along chromosomes.
We have constructed a replication-defective adenovirus vector encoding the yeast I- Sce I endonuclease under the control of the murine cytomegalovirus immediate-early gene promoter (AdM Sce I) for efficient delivery of this enzyme to mammalian cells. We present evidence of AdM Sce I-mediated I- Sce I protein expression and cleavage activity in replication-permissive 293 cells, and of cleavage of chromosomes in vivo in both 293 cells and in non-permissive human cells. We have exploited this system for the generation of chromosomes capped by artificial telomeric sequences in cells with integrated plasmids containing telomeric DNA arrays adjacent to an I- Sce I recognition site. The properties of the AdM Sce I virus described here make it a useful tool for studying biological processes involving induction of DNA breaks, recombination and gene targeting in cells grown in culture and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.