This study evaluates the performances of the presence only approach, Maximum Entropy, in assessing landslide triggering-thickness susceptibility within the Mili catchment (Sicily, Italy). This catchment underwent several meteorological stresses, resulting in hundreds of shallow rapid mass movements between 2007 and 2011. In particular, the area has become known for two disasters, which occurred in 2009 and 2010; the first weather system did not pass directly over the catchment however peak rainfall was registered over the basin during the second meteorological event.Field data were collected to associate the depth from the slope surface that material was mobilised at the triggering zone to each mass movement within the catchment. This information has been used to model the landslide susceptibility for two classes of processes, divided into shallow failures for maximum depths of 1m and deep ones in case of values equal or greater than 1m. Topographic attributes from a 2m DEM were used as predictors, together with medium resolution vegetation indexes derived from ASTER scenes and geological, land use and tectonic maps. The presence-only approach discriminated between the two depth classes at the landslide trigger zone, producing excellent prediction skills associated with relatively low variances across a set of 50 randomly generated replicates. The role of each predictor was assessed to ascertain the significance to the final model output. This work uses simple field measurements to produce triggering-thickness susceptibility, which is a novel approach and may perform better as a proxy for landslide hazard assessments with respect to more common susceptibility practises.
This work presents the structural evolution of a poorly studied key-area in the middle Ala Valley, Western Alps, where two tectono-metamorphic units are exposed. A geological map at the 1:10.000 scale, integrated with meso-and microstructural analysis, has been realised. We investigated the contact area between Gran Paradiso Massif in the footwall and Lower Piedmont Zone in the hanging wall. Both tectono-metamorphic units, with a different paleogeographic affinity, preserve similar polyphasic deformation histories, defined by four deformation phases. The Dp phase, strongly transposing previous structural relicts, is marked by a high-pressure assemblage associated with the Sp foliation. Dp controls the lithological boundary attitude. A mylonitic zone, developed during the Dp, showing kinematic indicators pointing to a top-to-the N-NW sense of shear, is responsible for the juxtaposition of the two units. Dp structural elements are deformed by Dp+1 and Dp+2 subsequent phases. A greenschist-facies overprinting was observed during the Dp+1 phase.
Methods of Earth Sciences have been employed in archaeological sites of the Marsica region, central Italy, in two different perspectives: to enhance knowledge on past natural events which damaged/destroyed ancient settlements/monuments and to gather data useful/necessary for preservation of the local cultural heritage. Within this wide perspective, the paper deals with (i) recent archaeoseismological investigations at Alba Fucens and other sites of the Fucino Plain which add evidence of sudden building collapse to the already available (archaeoseismological and paleoseismological) data concerning seismicity of fifth-sixth century AD; (ii) archaeological investigations on remains of the Medieval church of San Bartolomeo showing that coseismic damage in 1349 caused the abandonment of part of the building and its (re)use for burials; (iii) evidence of slope instability which caused rapid mass deposition in the lowest sector of ancient Alba Fucens since around the half of the sixth century AD, inhibiting the occupation of the Roman town; (iv) capable faulting potentially affecting the westernmost sector of the huge hydraulic works made by Romans during the first-second century AD to drain former Lake Fucino.
Capo Faro Promontory, located in Salina (Aeolian Islands, southern Italy), is a popular summer destination due to its volcanic morphologies, seaside, and enogastronomy. A flat area, right behind the scarp edge of a coastal cliff, hosts the Capo Faro Estate, one of the most renowned vineyards and residences on Salina Island. The promontory has been characterised in terms of geomorphological features. Remote sensing analysis, after nadir and off–nadir UAV flights, supports the field activities to explore the hazard to which the area is subjected. In particular, the coastal cliff turns out to be affected by a rapid retreat inducing landslides. Therefore, the cliff area has been investigated through a detailed stratigraphic and structural field survey. Using the generated high–resolution Digital Elevation Model, bathymetric–topographic profiles were extracted along the coastline facing the cliff. The thickness of volcanic deposits was evaluated to obtain a geological model of it. The main rock mass discontinuities have been characterised to define the structural features affecting the stability of the rock wall. The obtained results prove the contribution of such research fundamental in planning risk mitigation measures.
<p>The landscape evolution of the U-shaped Maira Valley was mainly led by glacial dynamics during Pleistocene. The Holocene linear fluvial erosion creates higher steepness slopes in a narrow valley in which gravitational phenomena involves buildings and facilities of Acceglio municipality (Piedmont, Italy). A geomorphological survey in an unmapped area of about 12 km<sup>2</sup> has been carried out and a new map at scale 1:10000 has been realised. In order to improve the accuracy of fieldwork data, several multidisciplinary techniques have been investigated. The landforms and slope evolution were analysed by using a 5-meters resolution ARPA Digital Elevation Model (DEM) in GIS environment. Discontinuities and geomorphological features were recognized and mapped observing aerial-photos provided by Regione Piemonte. Multi-temporal dataset of orthophotos were useful to examine the river pattern behaviour coupled with interdigitating polygenic fan deposition. The stratigraphic sequence knowledge was achieved using boreholes, inclinometers and piezometers evaluating eventual detrital cover thickness. Detailed field investigations allowed to understand the relationship between structural geology and landslide evolution, in particular concerning several detachment zones characterising the slope overlooking Acceglio town. In the uppermost range of that slope, the fracturation is intense and influences the rock-falls and rock avalanches trigger, whilst debris flows were identified throughout the detected area associated with a homogeneous presence of weathered cover. Widespread accumulation bodies suggest how avalanche and debris flow occurrences have affected Acceglio human activities, testified by historical archives documents as well. In the past, several trial to mitigate these risks were performed through engineering activities which could be refined and implemented with further local analysis on landslide susceptibility. Research on this issue, in addition to having a great scientific interest, can provide essential tools for upper Maira Valley Administrations, being the main available support for an appropriate urban planning.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.