Morphine is a potent analgesic opioid used extensively for pain treatment. During the last decade, global consumption grew more than 4-fold. However, molecular mechanisms elicited by morphine are not totally understood. Thus, a growing literature indicates that there are additional actions to the analgesic effect. Previous studies about morphine and oxidative stress are controversial and used concentrations outside the range of clinical practice. Therefore, in this study, we hypothesized that a therapeutic concentration of morphine (1 μM) would show a protective effect in a traditional model of oxidative stress. We exposed the C6 glioma cell line to hydrogen peroxide (H2O2) and/or morphine for 24 h and evaluated cell viability, lipid peroxidation, and levels of sulfhydryl groups (an indicator of the redox state of the cell). Morphine did not prevent the decrease in cell viability provoked by H2O2 but partially prevented lipid peroxidation caused by 0.0025% H2O2 (a concentration allowing more than 90% cell viability). Interestingly, this opioid did not alter the increased levels of sulfhydryl groups produced by exposure to 0.0025% H2O2, opening the possibility that alternative molecular mechanisms (a direct scavenging activity or the inhibition of NAPDH oxidase) may explain the protective effect registered in the lipid peroxidation assay. Our results demonstrate, for the first time, that morphine in usual analgesic doses may contribute to minimizing oxidative stress in cells of glial origin. This study supports the importance of employing concentrations similar to those used in clinical practice for a better approximation between experimental models and the clinical setting.
BACKGROUND AND OBJECTIVES: Fibromyalgia is a highly relevant theme for research considering its impressive 2% worldwide prevalence, diffuse pain and suffering, largely unknown pathophysiology, scarce odds of cure and, more often than not, poor symptom control. This study aims to review the main options of treatment for fibromyalgia, including some novel alternatives. CONTENTS: The pharmacological treatment for fibromyalgia can be prescribed in monotherapy or combination of drugs, which comprises antidepressants, muscle relaxants, anticonvulsants, cannabinoids, opioids, N-methyl D-Aspartate antagonists, melatoninergic agonists, peptidergic substances among others. Non-pharmacological therapies include acupuncture, behavioral (or psychobehavioral) and psychological (or psychotherapy) interventions, physical activity programs, hyperbaric oxygen therapy, ozone therapy, transcranial magnetic stimulation, stretching exercises associated to low intravenous curare doses, among others. Treatment modalities are presented according to possible mechanisms of action, level of scientific evidence and recommendation. CONCLUSION: Fibromyalgia therapy should be individualized, and it does not aim the cure. Its objective is to reduce the subject's suffering; provide function improvement and, as much as possible, the individual's autonomy and quality of life. There is much in common in most approach recommendations, yet there are some divergence and changes as knowledge is acquired about a theme where consensus is far from being achieved.
Mercury is an extremely dangerous environmental contaminant responsible for episodes of human intoxication throughout the world. Methylmercury, the most toxic compound of this metal, mainly targets the central nervous system, accumulating preferentially in cells of glial origin and causing oxidative stress. Despite studies demonstrating the current exposure of human populations, the consequences of mercury intoxication and concomitant use of drugs targeting the central nervous system (especially drugs used in long-term treatments, such as analgesics) are completely unknown. Morphine is a major option for pain management; its global consumption more than quadrupled in the last decade. Controversially, morphine has been proposed to function in oxidative stress independent of the activation of the opioid receptors. In this work, a therapeutic concentration of morphine partially protected the cellular viability of cells from a C6 glioma cell line exposed to methylmercury. Morphine treatment also reduced lipid peroxidation and totally prevented increases in nitrite levels in those cells. A mechanistic study revealed no alteration in sulfhydryl groups or direct scavenging at this opioid concentration. Interestingly, the opioid antagonist naloxone completely eliminated the protective effect of morphine against methylmercury intoxication, pointing to opioid receptors as the major contributor to this action. Taken together, the experiments in the current study provide the first demonstration that a therapeutic concentration of morphine is able to reduce methylmercury-induced oxidative damage and cell death by activating the opioid receptors. Thus, these receptors may be a promising pharmacological target for modulating the deleterious effects of mercury intoxication. Although additional studies are necessary, our results support the clinical safety of using this opioid in methylmercury-intoxicated patients, suggesting that normal analgesic doses could confer an additional degree of protection against the cytotoxicity of this xenobiotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.