By using time-of-flight information encoded in multiply scattered light, it is possible to reconstruct images of objects hidden from the camera's direct line of sight. Here, we present a non-line-of-sight imaging system that uses a single-pixel, single-photon avalanche diode (SPAD) to collect time-of-flight information. Compared to earlier systems, this modification provides significant improvements in terms of power requirements, form factor, cost, and reconstruction time, while maintaining a comparable time resolution. The potential for further size and cost reduction of this technology make this system a good base for developing a practical system that can be used in real world applications.
Fluorescence microscopy and derived techniques are continuously looking for photodetectors able to guarantee increased sensitivity, high spatial and temporal resolution and ease of integration into modern microscopy architectures. Recent advances in single-photon avalanche diodes (SPADs) fabricated with industry-standard microelectronic processes allow the development of new detection systems tailored to address the requirements of advanced imaging techniques (such as image-scanning microscopy). To this aim, we present the complete design and characterization of two bidimensional SPAD arrays composed of 25 fully independent and asynchronously-operated pixels, both having fill-factor of about 50% and specifically designed for being integrated into existing laser scanning microscopes. We used two different microelectronics technologies to fabricate our detectors: the first technology exhibiting very low noise (roughly 200 dark counts per second at room temperature), and the second one showing enhanced detection efficiency (more than 60% at a wavelength of 500 nm). Starting from the silicon-level device structures and moving towards the in-pixel and readout electronics description, we present performance assessments and comparisons between the two detectors. Images of a biological sample acquired after their integration into our custom imagescanning microscope finally demonstrate their exquisite on-field performance in terms of spatial resolution and contrast enhancement. We envisage that this work can trigger the development of a new class of SPAD-based detector arrays able to substitute the typical singleelement sensor used in fluorescence laser scanning microscopy.
This paper presents a complete, compact, and low power consumption instrument designed for time-domain near-infrared spectroscopy. It employs two custom-designed pulsed diode lasers (operating at 830 and 670 nm, with average optical power higher than 2 mW at 40 MHz repetition frequency), a single-photon detection module (based on a 1 mm2 active area silicon photomultiplier), and a custom time-to-digital converter with 10 ps time resolution. The system experimental characterization shows an instrument response function narrower than 300 ps (full-width at half maximum), with measurement stability better than ±1% over several hours of operation. The instrument, which is housed into a compact aluminum case (size 200 Ã\u97 160 Ã\u97 50 mm3), is specifically tailored for portability and ease of operation, hence fostering the diffusion of time-domain diffuse optics techniques. Thanks to a total power consumption lower than 10 W, this system is suitable for battery operation, thus enabling on-field measurements
The combination of confocal laser-scanning microscopy (CLSM) and fluorescence fluctuation spectroscopy (FFS) is a powerful tool in studying fast, sub-resolution biomolecular processes in living cells. A detector array can further enhance CLSM-based FFS techniques, as it allows the simultaneous acquisition of several samples–essentially images—of the CLSM detection volume. However, the detector arrays that have previously been proposed for this purpose require tedious data corrections and preclude the combination of FFS with single-photon techniques, such as fluorescence lifetime imaging. Here, we solve these limitations by integrating a novel single-photon-avalanche-diode (SPAD) array detector in a CLSM system. We validate this new implementation on a series of FFS analyses: spot-variation fluorescence correlation spectroscopy, pair-correlation function analysis, and image-derived mean squared displacement analysis. We predict that the unique combination of spatial and temporal information provided by our detector will make the proposed architecture the method of choice for CLSM-based FFS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.