A novel LC-MS/MS method was developed for the quantification of the new cyclin dependent kinase inhibitors (CDKIs) palbociclib and ribociclib and the aromatase inhibitor letrozole used in combinatory regimen. The proposed method is appropriate to be applied in clinical practice due to the simple and fast sample preparation based on protein precipitation, the low amount of patient sample necessary for the analysis (10 μL) and the total run time of 6.5 min. It was fully validated according to FDA and EMA guidelines on bioanalytical method validation. The linearity was assessed (R 2 within 0.9992-0.9983) over the concentration ranges of 0.3-250 ng/mL for palbociclib, 10-10000 ng/mL for ribociclib and 0.5-500 ng/mL for letrozole that properly cover the therapeutic plasma concentrations. A specific strategy was implemented to reduce the carryover phenomenon, formerly known for these CDKIs. This method was applied to quantify the C min of palbociclib, ribociclib and letrozole in plasma samples from patients enrolled in a clinical study. The same set of study samples was analysed twice in separate runs to assess the reproducibility of the method by means of the incurred samples reanalysis. The results corroborated the reliability of the analyte concentrations obtained with the bioanalytical method, already proved by the validation process. The percentage differences were always within ±10% for all the analytes and the R 2 of the correlation graph between the two quantifications was equal to 0.9994. OPEN ACCESS Citation: Posocco B, Buzzo M, Poetto AS, Orleni M, Gagno S, Zanchetta M, et al. (2020) Simultaneous quantification of palbociclib, ribociclib and letrozole in human plasma by a new LC-MS/MS method for clinical application. PLoS ONE 15(2): e0228822.
The introduction of imatinib, an oral tyrosine kinase inhibitor, as first-line standard therapy in patients with unresectable, metastatic, or recurrent gastro-intestinal stromal tumor (GIST), strongly improved their treatment outcomes. However, therapeutic drug monitoring (TDM) is recommended for this drug due to the large inter-individual variability in plasma concentration when standard dose is administered. A Cmin higher than 760 ng/mL was associated with a longer progression free survival. Thus, a LC-MS/MS method has been developed and fully validated to quantify imatinib and its active metabolite, norimatinib, in finger-prick dried blood spot (DBS). The influence of hematocrit, sample homogeneity, and spot size and the correlation between finger-prick and venous DBS measurements were also assessed. The method showed a good linearity (R2 > 0,996) between 50–7500 ng/mL for imatinib and 10–1500 ng/mL for norimatinib. Analytes were extracted from DBS samples by simply adding to 3 mm-discs 150 μL of acidified methanol containing IMA-D8. The collected extract was then injected on a LC Nexera system in-house configured for the on-line cleanup, coupled with an API-4000 QT. The chromatographic separation was conducted on a Synergi Fusion-RP column (4 μm, 2x50 mm) while the trapping column was a POROS R1/20 (20 μm, 2x30 mm). The total run time was 8.5 min. DBSs stored at room temperature in plastic envelopes containing a silica-gel drying bag were stable up to 16 months.The proposed method was applied to 67 clinical samples, showing a good correlation between patients’ finger-prick DBS and plasma concentrations, measured by the reference LC-MS/MS method, internally validated. Imatinib and norimatinib concentrations found in finger-prick DBS were adjusted by hematocrit or by an experimental correction factor to estimate the corresponding plasma measurements. At the best of our knowledge, the proposed LC-MS/MS method is the first analytical assay to measure imatinib and norimatinib in DBS samples.
Therapeutic drug monitoring (TDM) for anticancer drug imatinib has been suggested as the best way to improve the treatment response and minimize the risk of adverse reactions in chronic myelogenous leukemia (CML) and gastrointestinal stromal tumor (GIST) patients. TDM of oncology treatments with standard analytical methods, such as liquid chromatography−tandem mass spectrometry (LC−MS/ MS) is, however, complex and demanding. This paper proposes a new method for quantitation of imatinib in human plasma, based on surface enhanced raman spectroscopy (SERS) and multivariate calibration using partial least-squares regression (PLSR). The best PLSR model was obtained with three latent variables in the range from 123 to 5000 ng/mL of imatinib, providing a standard error of prediction (SEP) of 510 ng/mL. The method was validated in accordance with international guidelines, through the estimate of figures of merit, such as precision, accuracy, systematic error, analytical sensitivity, limits of detection, and quantitation. Moreover, the feasibility and clinical utility of this approach have also been verified using real plasma samples taken from deidentified patients. The results were in good agreement with a clinically validated LC−MS/MS method. The new SERS method presented in this preliminary work showed simplicity, short analysis time, good sensitivity, and could be considered a promising platform for TDM of imatinib treatment in a point-of-care setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.