Processing and control systems based on artificial intelligence (AI) have progressively improved mobile robotic exoskeletons used in upper-limb motor rehabilitation. This systematic review presents the advances and trends of those technologies. A literature search was performed in Scopus, IEEE Xplore, Web of Science, and PubMed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology with three main inclusion criteria: (a) motor or neuromotor rehabilitation for upper limbs, (b) mobile robotic exoskeletons, and (c) AI. The period under investigation spanned from 2016 to 2020, resulting in 30 articles that met the criteria. The literature showed the use of artificial neural networks (40%), adaptive algorithms (20%), and other mixed AI techniques (40%). Additionally, it was found that in only 16% of the articles, developments focused on neuromotor rehabilitation. The main trend in the research is the development of wearable robotic exoskeletons (53%) and the fusion of data collected from multiple sensors that enrich the training of intelligent algorithms. There is a latent need to develop more reliable systems through clinical validation and improvement of technical characteristics, such as weight/dimensions of devices, in order to have positive impacts on the rehabilitation process and improve the interactions among patients, teams of health professionals, and technology.
R e s u m e nExisten diferentes modelos de calidad del software que permiten un proceso de mejora continua con su implementación. En el presente escrito se exponen características de los modelos investigados a través de una revisión de información, se realiza una clasificación de los mismos de acuerdo con el nivel de proceso o de producto; cada modelo cuenta con unas características y una estructura la cual se enuncia brevemente en el escrito. Las diferentes empresas, con el fin de verse inmersas en una mejora continua de sus procesos, han identificado la importancia de hacerse a la implementación de modelos que permitan certificar y garantizar la calidad de sus productos y procesos, se encontraron algunos casos de éxito de la implementación de los modelos estudiados, los cuales permitieron a las empresas posicionarse o destacarse por mejorar los procesos de su negocio. PalabRas c l av eCalidad, modelo, estándar, software, evaluación, calidad de software Software quality models, a state of the art a b s t R a c tThere are many software quality models that allows a process of continuous improvement with its implementation. In this paper some characteristics of the investigated models are exposed, through an information revision, a classification of these models is performed according to the level of the process or product; each model count with some characteristics and a structure that is briefly stated in the written. The different enterprises in order to be immersed on a continuous improvement of their processes have identified the importance of getting the implementation of models that allows to certify an guarantee the quality of their processes and products, some success cases were found for the implementation of the studied models, which allowed the enterprises to position or stand by the improvement of their business process.
The use of videogames and motion capture systems in rehabilitation contributes to the recovery of the patient. This systematic review aimed to explore the works related to these technologies. The PRISMA method (Preferred Reporting Items for Systematic reviews and Meta-Analyses) was used to search the databases Scopus, PubMed, IEEE Xplore, and Web of Science, taking into consideration four aspects: physical rehabilitation, the use of videogames, motion capture technologies, and upper limb rehabilitation. The literature selection was limited to open access works published between 2015 and 2020, obtaining 19 articles that met the inclusion criteria. The works reported the use of inertial measurement units (37%), a Kinect sensor (48%), and other technologies (15%). It was identified that 26% used commercial products, while 74% were developed independently. Another finding was that 47% of the works focus on post-stroke motor recovery. Finally, diverse studies sought to support physical rehabilitation using motion capture systems incorporating inertial units, which offer precision and accessibility at a low cost. There is a clear need to continue generating proposals that confront the challenges of rehabilitation with technologies which offer precision and healthcare coverage, and which, additionally, integrate elements that foster the patient’s motivation and participation.
In recent years, various studies have demonstrated the potential of electroencephalographic (EEG) signals for the development of brain-computer interfaces (BCIs) in the rehabilitation of human limbs. This article is a systematic review of the state of the art and opportunities in the development of BCIs for the rehabilitation of upper and lower limbs of the human body. The systematic review was conducted in databases considering using EEG signals, interface proposals to rehabilitate upper/lower limbs using motor intention or movement assistance and utilizing virtual environments in feedback. Studies that did not specify which processing system was used were excluded. Analyses of the design processing or reviews were excluded as well. It was identified that 11 corresponded to applications to rehabilitate upper limbs, six to lower limbs, and one to both. Likewise, six combined visual/auditory feedback, two haptic/visual, and two visual/auditory/haptic. In addition, four had fully immersive virtual reality (VR), three semi-immersive VR, and 11 non-immersive VR. In summary, the studies have demonstrated that using EEG signals, and user feedback offer benefits including cost, effectiveness, better training, user motivation and there is a need to continue developing interfaces that are accessible to users, and that integrate feedback techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.