The effect of animal feeding on milk volatile organic compounds (VOCs) of metabolic origin was tested on a hay-based diet (H), a highly diversified pasture under continuous grazing (CG), or a less diversified pasture under rotational grazing (RG). Individual milk of 24 Montbéliarde cows (8 per treatment) were sampled after 2 weeks. Pasture-derived milk was richer (p < 0.05) in camphene, sabinene, β-caryophyllene, and skatole than H milk. Neither milk yield nor fat content affected the majority of VOCs measured. Skatole increased slightly with milk yield, while indole and cineole decreased slightly with milk fat content but with poor regression (R(2) < 0.54). Multivariate analysis showed that, on the basis of those VOCs of metabolic origin whose concentration differed between treatment (dimethyl-sulfone, skatole, toluene, undecanoic acid, 1-octadecene, benzeneacetaldehyde, octanoic acid, and 2-pentanone-4-hydroxy-4-methyl), it was possible to obtain good discriminations among feeding systems. This study is promising for a future use of VOCs of metabolic origin to trace animal feeding systems.
The objective of this work was to compare milk fatty acid (FA) profile and texture and appearance of Cantal cheeses obtained from cows grazing 2 different upland grasslands: a highly diversified pasture (74 species) of area 12.5 ha managed under continuous mode (C), and a weakly diversified pasture (31 species) of area 7.7 ha (an old temporary grassland) managed under rotational mode (R). A control group of cows fed a hay-based diet (indoors, I) was used. Three equivalent groups of 12 Montbéliarde cows underwent the 3 treatments from May to September 2008. The cheeses were manufactured during 3 consecutive days in early June, early July, and late August (27 cheeses in all). The texture, appearance, and chemical composition of the cheeses were determined after 12 wk of ripening. Concentrations of total saturated FA and monounsaturated FA were higher and lower, respectively, in I milks compared with pasture milks. The concentrations of trans-11-C18:1 and cis-9-C18:1, and polyunsaturated FA as well as yellowness decreased during the season in C-derived milk but remained constant in R-derived milk, through a combined effect of grass development stage and the cows' grazing selection. The I cheeses were, on average, firmer, less creamy, less elastic, and less yellow than the pasture cheeses. Decreasing and increasing trends in texture firmness during the season were observed for C and R cheeses, respectively. The rind of the pasture-fed cow cheese had fewer, less intensely colored, and less prominent spots than did that of I cheeses. This difference was probably due to greater migration of fat to the rind during pressing because of the lower fat melting point of the pasture-fed cow cheeses, which had higher unsaturated FA content. The greater amounts of fat deposited on the rind of the pasture-fed cow cheeses may have partially inhibited the microbial activity responsible for rind appearance. Our trial underlines the importance of the effects of grazing management associated with vegetation type on milk and cheese characteristics.
The aim of this study was to predict the fatty acid (FA) composition of bulk milk using data describing farming practices collected via on-farm surveys. The FA composition of 1,248 bulk cow milk samples and the related farming practices were collected from 20 experiments led in 10 different European countries at 44°N to 60°N latitude and sea level to 2,000 m altitude. Farming practice-based FA predictions [coefficient of determination (R(2)) >0.50] were good for C16:0, C17:0, saturated FA, polyunsaturated FA, and odd-chain FA, and very good (R(2) ≥0.60) for trans-11 C18:1, trans-10 + trans-11 C18:1, cis-9,trans-11 conjugated linoleic acid, total trans FA, C18:3n-3, n-6:n-3 ratio, and branched-chain FA. Fatty acids were predicted by cow diet composition and by the altitude at which milk was produced, whereas animal-related factors (i.e., lactation stage, breed, milk yield, and proportion of primiparous cows in the herd) were not significant in any of the models. Proportion of fresh herbage in the cow diet was the main predictor, with the highest effect in almost all FA models. However, models built solely on conserved forage-derived samples gave good predictions for odd-chain FA, branched-chain FA, trans-10 C18:1 and C18:3n-3 (R(2) ≥0.46, 0.54, 0.52, and 0.70, respectively). These prediction models could offer farmers a valuable tool to help improve the nutritional quality of the milk they produce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.