With a combination of complementary experimental techniques, namely sedimentation assay, Fourier transform infrared spectroscopy, and x-ray absorption spectroscopy, we are able to determine the atomic structure around the metal-binding site in samples where amyloid- (A) peptides are complexed with either Cu(II) or Zn(II). Exploiting information obtained on a selected set of fragments of the A peptide, we identify along the sequence the histidine residues coordinated to the metal in the various peptides we have studied (A 1-40 , A 1-16 , A 1-28 , A 5-23 , and A 17-40 ). Our data can be consistently interpreted assuming that all of the peptides encompassing the minimal 1-16 amino acidic sequence display a copper coordination mode that involves three histidines (His 6 , His 13 , and His 14 ). In zinc-A complexes, despite the fact that the metal coordination appears to be more sensitive to solution condition and shows a less rigid geometry around the binding site, a four-histidine coordination mode is seen to be preferred. Lacking a fourth histidine along the A peptide sequence, this geometrical arrangement hints at a Zn(II)-promoted interpeptide aggregation mode.
Previous efforts to control cellular behaviour have largely relied upon various forms of genetic engineering. Once the genetic content of a living cell is modified, the behaviour of that cell typically changes as well. However, other methods of cellular control are possible. All cells sense and respond to their environment. Therefore, artificial, non-living cellular mimics could be engineered to activate or repress already existing natural sensory pathways of living cells through chemical communication. Here we describe the construction of such a system. The artificial cells expand the senses of Escherichia coli by translating a chemical message that E. coli cannot sense on its own to a molecule that activates a natural cellular response. This methodology could open new opportunities in engineering cellular behaviour without exploiting genetically modified organisms.
Actinaria cytolysins are very potent basic toxins isolated from the venom of sea anemones, which are supposed to exert their toxic activity through formation of oligomeric pores in the host plasma membrane. To gain insight into their mechanism of action, the interaction of Stichodactyla helianthus sticholysin I (St-I) with lipid bilayers was studied. St-I increased the permeability of calcein-loaded lipid vesicles composed of different phospholipids. The rate of permeabilization improved when sphingomyelin (SM) was introduced into phosphatidylcholine (PC) vesicles, reaching an optimum value at equimolar concentrations of these two phospholipids. It was also a function of the pH, showing a local maximum of activity between pH 8 and 9 and a marked decrease at pH 10 and 11. Under optimal conditions (e.g., PC:SM 1:1, pH 8, toxin to vesicle ratio < 200), most of the toxin is bound to the lipid phase. The reduced toxin effect at low and high SM content, or at high pH, is principally due to a decreased toxin binding. From the dose dependence of the permeabilization, at constant lipid concentration, it was inferred that St-I increases membrane permeability by forming oligomeric pores comprising at least three cytolysin monomers. The involvement of oligomers was also suggested by the dependence of calcein release on the vesicle concentration at constant toxin dose. In fact, the time course of dye release was well described under all circumstances by a kinetic model which assumes that trimerization leads to a conductive pore. All the relevant equilibrium and rate constants were derived. Addition of St-I to one side of a planar lipid membrane increased the conductivity of the film in discrete steps of defined amplitude, indicating the formation of ion channels. The dose dependence of this effect was the same as with LUV. The channel was cation-selective and its conductance suggested a functional radius of about 1.0 nm, consistent with the size of the lesion previously observed in red blood cells. Pores exhibited rectification and voltage-dependent gating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.