One of the significant difficulties in representing the behavior of reinforced concrete structures in mathematical models is the post-cracking non-linearity. And so, reinforced concrete slabs are no exception to the rule. Still, the usual analysis models for this structural element are verified in the elastic regime when the concrete tensile strength is considered. This model is acceptable for the service limit states but not the ultimate limit state. These aspects associated with the great difference in the behavior of concrete when subjected to tension or compression make it necessary to study a nonlinear mathematical model that can represent a reinforced concrete slab subjected to bending, from the beginning of loading until its failure, as accurately as possible. With this, the ANSYS software, from its version 18, made available in its library the Drucker-Prager-Rankine model arranged with two distinct rupture surfaces. A Drucker-Prager criterion for the concrete subjected to compression and a Rankine criterion for concrete in tension. In addition, the software is based on the finite element method, giving the possibility of precise and nonlinear analysis through load and deformation increments, taking into account both elastic and plastic deformations after concrete cracking. Thus, this work aims to present the modeling of reinforced concrete slabs through the Drucker-Prager-Rankine surface, validating the model by comparing it with several experimental tests. The model results were coherent and acceptable, presenting a good approximation of the results of the tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.