<p>Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution.</p>
<p>This presentation provides an overall summary of the science and instrument design for Ariel and presents the many activities that the Ariel team have planned to engage the science community at large and the public prior to launch. These include the Ariel Dry-Run program and citizen-science programs such as ExoClock and the Ariel Data Challenges.</p>
PLAnetary Transits and Oscillations of stars (PLATO) is a medium-class mission belonging to the European Space Agency (ESA) Cosmic Vision programme. The mission payload is composed of 26 telescopes and cameras which will observe uninterruptedly stars like our Sun in order to identify new exoplanets candidates down to the range of Earth analogues. The images from the cameras are generated by several distributed Digital Processing Units (DPUs) connected together in a SpaceWire network and producing a large quantity of data to be processed by the Instrument Control Unit. The paper presents the results of the analyses and simulations performed using the Simulator for HI-Speed Networks (SHINE) with the objective to assess the on-board data network performance.• Data Processing Units (DPUs);
This is a copy of the published version, or version of record, available on the publisher's website. This version does not track changes, errata, or withdrawals on the publisher's site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.