PLATO [1] has been selected and adopted by ESA as the third medium-class Mission (M3) of the Cosmic Vision Program, to be launched in 2026 with a Soyuz-Fregat rocket from the French Guiana. Its Payload (P/L) is based on a suite of 26 telescopes and cameras in order to discover and characterise, thanks to ultra-high accurate photometry and the transits method, new exoplanets down to the range of Earth analogues. Each camera is composed of 4 CCDs working in fullframe or frame-transfer mode. 24 cameras out of 26 host 4510 by 4510 pixels CCDs, operated in full-frame mode with a pixel depth of 16 bits and a cadence of 25 s.Given the huge data volume to be managed, the PLATO P/L relies on an efficient Data Processing System (DPS) whose Units perform images windowing, cropping and compression. Each camera and DPS Unit is connected to a fast SpaceWire (SpW) network running at 100 MHz and interfaced to the satellite On-Board Computer (OBC) by means of an Instrument Control Unit (ICU), performing data collection and compression.