Lattice structures, whose manufacturing has been enabled by additive technologies, are gaining growing popularity in all the fields where lightweighting is imperative. Since the complexity of the lattice geometries stretches the technological boundaries even of additive processes, the manufactured structures can be significantly different from the nominal ones, in terms of expected dimensions but also of defects. Therefore, the successful use of lattices needs the combined optimization of their design, structural modeling, build orientation, and setup. The article reports the results of quasi-static compression tests performed on BCCxyz lattices manufactured in a AlSi7Mg alloy using additive manufacturing. The results are compared with numerical simulations using two different approaches. The findings show the influence of the relative density on stiffness, strength, and on the energy absorption properties of the lattice. The correlation with the technological feasibility points out credible improvements in the choice of a unit cell with fewer manufacturing issues, lower density, and possibly equal mechanical properties.
A honeycomb impact attenuator for a Formula SAE (FSAE) prototype vehicle is examined using both experimental and numerical analyses. Two common FSAE impact attenuators were compared to a new design concept, combining four layers of hexagonal honeycomb. The comparison aimed to obtain the combination of the lowest mass and highest energy absorption. The attenuator must comply with both the FSAE championship rules and further internally-defined design constraints. The work continues addressing the numerical-experimental correlation of the applied materials. Finally, the finite element models for virtual crash testing are presented and were validated through the experimental tests.
Structural engineering in the automotive industry has moved towards weight reduction and passive safety whilst maintaining a good structural performance. The development of Additive Manufacturing (AM) technologies has boosted design freedom, leading to a wide range of geometries and integrating functionally-graded lattice structures. This paper presents three AM-oriented numerical optimization methods, aimed at optimizing components made of: i) bulk material, ii) a combination of bulk material and graded lattice structures; iii) an integration of solid, lattice and thin-walled structures. The optimization methods were validated by considering the steering column support of a mid-rear engine sports car, involving complex loading conditions and shape. The results of the three methods are compared, and the advantages and disadvantages of the solutions are discussed. The integration between solid, lattice thin-walled structures produced the best results, with a mass reduction of 49.7% with respect to the existing component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.