Using multivariate statistical tools, the composition of the phytoplankton community was related to the characteristics of the domestic sewage used as culture medium in three high rate ponds (HRPs) submitted to different solar radiation levels. A total of 32 genera of phytoplankton were identified in the ponds; the class Chlorophyceae was the most abundant during the entire sampling period, with a larger number of individuals of the genus Desmodesmus in the summer and fall, and of the genus Chlorella in the winter and spring. The lowest occurrence of phytoplankton was observed in the fall, with behavior similar to the evolution of solar radiation throughout the year. Blocking over 30% of the solar radiation allowed for less variability of the phytoplankton community and favored the growth of biomass with higher density of individuals, as well as higher concentrations of chlorophyll-a and dissolved oxygen. On the other hand, the pond with 80% of shading presented the lowest mean density of organisms; from the perspective of wastewater treatment, however, it can be considered the most efficient in terms of organic matter and nutrient removal. According to the regression analysis, the algal biomass in HRPs can be maximized mostly if we consider the positive effect of carbon and phosphorus and the limiting effect of nitrogen and non-biodegradable organic load. For the conditions evaluated in this study, the photoinhibition phenomenon was not observed. Other aspects such as competition with other microorganisms for space and nutrients, or predation by zooplankton, seemed to be more significant for the growth and development of algal biomass. 2015 Elsevier B.V. All rights reserved.
High rate algal pond (HRAP) was evaluated according to its energy potential and productivity by two rates, net energy ratio (NER) and specific biomass productivity. All energy inputs were calculated according to one HRAP with pre-ultraviolet disinfection treating anaerobic domestic sewage. The outputs were calculated for two energetic pathways: lipid and biogas production for the raw biomass (RB) and biomass after lipid extraction. The non-polar lipid content in dry biomass was 7.6%, reaching a daily lipid productivity of 0.2 g/m·day and the biogas production potential was 0.20 m/kg solids. For the biomass after lipid extraction, the biogas production reached 2.6 m/kg solids. NER values of 10 for the RB were similar for lipids and biogas routes. The specific biomass productivity was 0.7 mg/kJ. For the residual biomass, after lipid extraction, NER value was 10 for the integrated route (lipids + biogas) and the specific biomass productivity of the extracted biomass was 0.4 mg/kJ. The best energetic pathway was to integrate both lipids and biogas route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.