The maternal ancestry (mtDNA) has important applications in different research fields, such as evolution, epidemiology, identification, and human population history. This is particularly interesting in Mestizos, which constitute the main population in Mexico (∼93%) resulting from post-Columbian admixture between Spaniards, Amerindians, and African slaves, principally. Consequently, we conducted minisequencing analysis (SNaPshot) of 11 mitochondrial single-nucleotide polymorphisms in 742 Mestizos of 10 populations from different regions in Mexico. The predominant maternal ancestry was Native American (92.9%), including Haplogroups A, B, C, and D (47, 23.7, 15.9, and 6.2%, respectively). Conversely, European and African ancestries were less frequent (5.3 and 1.9%, respectively). The main characteristics of the maternal lineages observed in Mexican-Mestizos comprised the following: 1) contrasting geographic gradient of Haplogroups A and C; 2) increase of European lineages toward the Northwest; 3) low or absent, but homogeneous, African ancestry throughout the Mexican territory; 4) maternal lineages in Mestizos roughly represent the genetic makeup of the surrounding Amerindian groups, particularly toward the Southeast, but not in the North and West; 5) continuity over time of the geographic distribution of Amerindian lineages in Mayas; and 6) low but significant maternal population structure (FST = 2.8%; P = 0.0000). The average ancestry obtained from uniparental systems (mtDNA and Y-chromosome) in Mexican-Mestizos was correlated with previous ancestry estimates based on autosomal systems (genome-wide single-nucleotide polymorphisms and short tandem repeats). Finally, the comparison of paternal and maternal lineages provided additional information concerning the gender bias admixture, mating patterns, and population structure in Mestizos throughout the Mexican territory.
Maya civilization developed in Mesoamerica and encompassed the Yucatan Peninsula, Guatemala, Belize, part of the Mexican states of Tabasco and Chiapas, and the western parts of Honduras and El Salvador. This civilization persisted approximately 3,000 years and was one of the most advanced of its time, possessing the only known full writing system at the time, as well as art, sophisticated architecture, and mathematical and astronomical systems. This civilization reached the apex of its power and influence during the Preclassic period, from 2000 BCE to 250 CE. Genetic variation in the pre-Hispanic Mayas from archaeological sites in the Mexican states of Yucatan, Chiapas, Quintana Roo, and Tabasco and their relationship with the contemporary communities in these regions have not been previously studied. Consequently, the principal aim of this study was to determine mitochondrial DNA (mtDNA) variation in the pre-Hispanic Maya population and to assess the relationship of these individuals with contemporary Mesoamerican Maya and populations from Asia, Beringia, and North, Central, and South America. Our results revealed interactions and gene flow between populations in the different archaeological sites assessed in this study. The mtDNA haplogroup frequency in the pre-Hispanic Maya population (60.53%, 34.21%, and 5.26% for haplogroups A, C, and D, respectively) was similar to that of most Mexican and Guatemalan Maya populations, with haplogroup A exhibiting the highest frequency. Haplogroup B most likely arrived independently and mixed with populations carrying haplogroups A and C based on its absence in the pre-Hispanic Mexican Maya populations and low frequencies in most Mexican and Guatemalan Maya populations, although this also may be due to drift. Maya and Ciboneys sharing haplotype H10 belonged to haplogroup C1 and haplotype H4 of haplogroup D, suggesting shared regional haplotypes. This may indicate a shared genetic ancestry, suggesting more regional interaction between populations in the circum-Caribbean region than previously demonstrated. Haplotype sharing between the pre-Hispanic Maya and the indigenous populations from Asia, the Aleutian Islands, and North, Maternal Lineage in Pre-Hispanic and Contemporary Mayas ■ 137Central, and South America provides evidence for gene flow from the ancestral Amerindian population of the pre-Hispanic Maya to Central and South America.
Genetic factors have been implicated in suicidal behavior. It has been suggested that one of the roles of genetic factors in suicide could be represented by the effect of genetic variants on gene expression regulation. Alteration in the expression of genes participating in multiple biological systems in the suicidal brain has been demonstrated, so it is imperative to identify genetic variants that could influence gene expression or its regulatory mechanisms. In this study, we integrated DNA methylation, gene expression, and genotype data from the prefrontal cortex of suicides to identify genetic variants that could be factors in the regulation of gene expression, generally called quantitative trait locus (xQTLs). We identify 6,224 methylation quantitative trait loci and 2,239 expression quantitative trait loci (eQTLs) in the prefrontal cortex of suicide completers. The xQTLs identified influence the expression of genes involved in neurodevelopment and cell organization. Two of the eQTLs identified (rs8065311 and rs1019238) were previously associated with cannabis dependence, highlighting a candidate genetic variant for the increased suicide risk in subjects with substance use disorders. Our findings suggest that genetic variants may regulate gene expression in the prefrontal cortex of suicides through the modulation of promoter and enhancer activity, and to a lesser extent, binding transcription factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.