In an attempt to synthesize potential anticancer agents acting by inhibition of topoisomerase I (Topo I) a new series of oxyiminomethyl derivatives in position 7 of camptothecin (CPT) was prepared. The synthesis relied on the condensation of 20S-CPT-7-aldehyde or 20S-CPT-7-ketones with alkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl O-substituted hydroxylamines. The compounds were tested for their cytotoxic activity in vitro against H460 non-small lung carcinoma cell line, the activity being for 24 out of 37 compounds in the 0.01-0.3 microM range. A QSAR analysis indicated that lipophilicity is the main parameter correlated with cytotoxicity. Investigation of the DNA-Topo I-drug cleavable complex showed a rough parallelism between cytotoxicity and inhibition of Topo I. Persistence of the DNA cleavage after NaCl-mediated disruption of the ternary complex suggests that for the most potent compounds, e.g., 15, the cytotoxicity was at least in part related to stabilization of the complex, as also supported by the persistence of the DNA-enzyme complex in drug-treated cells. The in vivo antitumor efficacy of the most potent analogue (15) was evaluated in direct comparison with topotecan using human lung tumor xenograft models. In the range of optimal doses (2-3 mg/kg), the improved efficacy of 15 was documented in terms of inhibition of tumor growth and rate of complete response.
With the aim of understanding the influence of fluorine on the double bond of the cis-stilbene moiety of combretastatin derivatives and encouraged by a preliminary molecular modeling study showing a different biological environment on the interaction site with tubulin, we prepared, through various synthetic approaches, a small library of compounds in which one or both of the olefinic hydrogens were replaced with fluorine. X-ray analysis on the difluoro-CA-4 analogue demonstrated that the spatial arrangement of the molecule was not modified, compared to its nonfluorinated counterpart. SAR analysis confirmed the importance of the cis-stereochemistry of the stilbene scaffold. Nevertheless, some unpredicted results were observed on a few trans-fluorinated derivatives. The position of a fluorine atom on the double bond may affect the inhibition of tubulin polymerization and cytotoxic activity of these compounds.
N-Acyloxyiminium ions generated from 4-substituted l-pyroglutamic esters with 4-(3-butenyl), 4-(3-butynyl), 4-(3-cinnamylmethyl), and 4-allenic tethers undergo rapid Lewis acid mediated carbocyclization to give stereodefined azacyclic compounds depending on the nature of the nucleophilic tether. In general, reactions of alkenes and alkynes with terminal alkyl or aryl substituents, as well as allenes, proceed through transient vinylic carbocations that are attacked internally by the N-Boc group to give tricyclic dihydrooxazinones. Diastereotopic bis-4-(3-butenyl) and 4-(3-butynyl) tethers undergo stereochemically controlled attack favoring an antiperiplanar rather than synclinal approach to give enantiopure 6-halo octahydroindole-2-carboxylic acids and 6-halo hexahydroindole-2-carboxylic acids as their methyl esters, respectively. The aza bicyclic and tricyclic compounds are excellent scaffolds for diversification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.