In this paper the workspace and payload capacity of a new design of reconfigurable Delta-type parallel robot is analysed. The reconfiguration is achieved by adjusting the length of the kinematic chains of a given robot link simultaneously and symmetrically during the operation of the robot. This would produce a dynamic workspace in shape and volume. A numerical analysis of the variation of shape and volume of the workspace and payload capacity of the robot is presented. Based both on the results of this analysis and on practical requirements, a proposal for the design of a reconfiguring mechanism is presented.
PurposeThe purpose of this paper is to present a new vision-based control method, which enables delta-type parallel robots to track and manipulate objects moving in arbitrary trajectories. This constitutes an enhanced variant of the linear camera model-camera space manipulation (LCM-CSM).Design/methodology/approachAfter obtaining the LCM-CSM view parameters, a moving target’s position and its velocity are estimated in camera space using Kalman filter. The robot is then commanded to reach the target. The proposed control strategy has been experimentally validated using a PARALLIX LKF-2040, an academic delta-type parallel platform and seven different target trajectories for which the positioning errors were recorded.FindingsFor objects that moved manually along a sawtooth, zigzag or increasing spiral trajectory with changing velocities, a maximum positioning error of 4.31 mm was found, whereas objects that moved on a conveyor belt at constant velocity ranging from 7 to 12 cm/s, average errors between 2.2-2.75 mm were obtained. For static objects, an average error of 1.48 mm was found. Without vision-based control, the experimental platform used has a static positioning accuracy of 3.17 mm.Practical implicationsThe LCM-CSM method has a low computational cost and does not require calibration or computation of Jacobians. The new variant of LCM-CSM takes advantage of aforementioned characteristics and applies them to vision-based control of parallel robots interacting with moving objects.Originality/valueA new variant of the LCM-CSM method, traditionally used only for static positioning of a robot’s end-effector, was applied to parallel robots enabling the manipulation of objects moving along unknown trajectories.
International audienceThis work addresses the output feedback stabilisation problem for a class of linear single-input single-output systems subject to I/O network delays. More precisely, we are interested in the characterisation of the set of delay and gain parameters guaranteeing the stability of the closed-loop system. To perform such an analysis, we adopt an eigenvalue perturbation based approach. Various illustrative numerical examples complete the presentation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.