Six bias correction (BC) methods; delta-method (DT), linear scaling (LS), power transformation of precipitation (PTR), empirical quantile mapping (EQM), gamma quantile mapping (GQM) and gamma-pareto quantile mapping (GPQM) were applied to adjust the biases of historical monthly precipitation outputs from five General Circulation Models (GCMs) dynamically downscaled by two Regional Climate Models (RCMs) for a total of seven different GCM-RCM pairs over Costa Rica. High-resolution gridded precipitation observations were used for the control period 1951-1980 and validated over the period 1981-1995. Results show that considerable biases exist between uncorrected GCM-RCM outputs and observations, which largely depend on GCM-RCM pair, seasonality, climatic region and spatial resolution. After the application of bias correction, substantial biases reductions and comparable performances among most BC methods were observed for most GCM-RCM pairs; with EQM and DT marginally outperforming the remaining methods. Consequently, EQM and DT were selectively applied to correct the biases of precipitation projections from each individual GCM-RCM pair for a near-future (2011-2040), mid-future (2041-2070) and far-future (2071-2100) period under Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 using the control period . Results from the bias-corrected future ensemble-mean anticipate a marked decreasing trend in precipitation from near to far-future periods during the dry season (December, January, February (DJF) and March, April, May (MAM)) for RCP4.5 and 8.5; with pronounced drier conditions for those climatic regions draining towards the Pacific Ocean. In contrast, mostly wetter conditions are expected during the dry season under RCP2.6, particularly for the Caribbean region. In most of the country, the greatest decrease in precipitation is projected at the beginning of the rainy season (June, July, August (JJA)) for the far-future period under RCP8.5, except for the Caribbean region where mostly wetter conditions are anticipated. Regardless of future period, slight increases in precipitation with higher radiative forcing are expected for SON excluding the Caribbean region, where precipitation is likely to increase with increasing radiative forcing and future period. This study demonstrates that bias correction should be considered before direct application of GCM-RCM precipitation projections over complex territories such as Costa Rica.
Precipitation climatologies for the period 1961–1990 were generated for all climatic regions of Costa Rica using an irregular rain-gauge observational network comprised by 416 rain-gauge stations. Two sub-networks were defined: a high temporal resolution sub-network (HTR), including stations having at least 20 years of continuous records during the study period (157 in total); and a high spatial resolution sub-network (HSR), which includes all HTR-stations plus those stations with less than 20 years of continuous records (416 in total). Results from the kriging variance reduction efficiency (KRE) objective function between the two sub-networks, show that ordinary kriging (OK) is unable to fully explain the spatio-temporal variability of precipitation within most climatic regions if only stations from the HTR sub-network are used. Results also suggests that in most cases, it is beneficial to increase the density of the rain-gauge observational network at the expense of temporal fidelity, by including more stations even though their records may not represent the same time step. Thereafter, precipitation climatologies were generated using seven deterministic (IDW, TS2, TS2PARA, TS2LINEAR, TPS, MQS and NN) and two geostatistical (OK and KED) interpolation methods. Performance of the various interpolation methods was evaluated using cross validation technique, selecting the mean absolute error (MAE) and the root-mean square error (RMSE) as agreement metrics. Results suggest that IDW is marginally superior to OK and KED for most climatic regions. The remaining deterministic methods however, considerably deviate from IDW, which suggests that these methods are incapable of properly capturing the true-nature of spatial precipitation patterns over the considered climatic regions. The final generated IDW climatology was then validated against the Global Precipitation Climatology Centre (GPCC), Climate Research Unit (CRU) and WorldClim datasets, in which overall spatial and temporal coherence is considered satisfactory, giving assurance about the use this new climatology in the development of local climate impact studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.