The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications in physics, but also in insurance, finance and economics. A definition is given for a class of stochastic integrals driven by a CTRW, that includes the Itō and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Itō integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral and its Itō integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Lévy α-stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional FokkerPlanck equation, that generalize the standard diffusion equation solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE, and check it by Monte Carlo.
The fractional Poisson process (FPP) is a counting process with independent and identically distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in several fields of applied and theoretical physics including models for anomalous diffusion. Contrary to the well-known Poisson process, the fractional Poisson process does not have stationary and independent increments. It is not a Lévy process and it is not a Markov process. In this letter, we present formulae for its finite-dimensional distribution functions, fully characterizing the process. These exact analytical results are compared to Monte Carlo simulations.
We present an empirical analysis of the European electronic interbank market of overnight lending (e-MID) during the years 1999-2009. The main goal of the paper is to explain the observed changes of the cross-sectional dispersion of lending/borrowing conditions before, during and after the 2007-2008 subprime crisis. Unlike previous contributions, that focused on banks' dependent and macro information as explanatory variables, we address the role of banks' behaviour and market microstructure as determinants of the credit spreads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.