Surface treatments of textile fibers and fabrics significantly increase their performances for specific biomedical applications. Nowadays, silver is the most used antibacterial agent with a number of advantages. Among them, it is worth to note the high degree of biocompatibility, an excellent resistance to sterilization conditions, antibacterial properties with respect to different bacteria associated with a long-term of antibacterial efficiency. However, there are only a few antibacterial fibres available, mainly synthetic with high production cost and limited effectiveness. Cotton yarns with antimicrobial properties are most suitable for wound healing applications and other medical treatments thanks to their excellent moisture absorbance while synthetic based fibres are most suitable for industrial applications such as automotive tapestry and air filters. The silver-coated fibers were developed applying an innovative and low cost silver deposition technique for natural and synthetic fibers or yarns. The structure and morphology of the silver nanoclusters on the fibers was observed by scanning electron microscopy (SEM), atomic force microscopy analysis (AFM) and XRD analysis, and quantitatively confirmed by thermogravimetric analysis (TGA) measurements. Good silver coating stability has been confirmed performing several industrial washing. Antimicrobial tests with Escherichia coli were performed.
Antibacterial coatings on catheters for acute dialysis were obtained by an innovative and patented silver deposition technique based on the photo-reduction of the silver solution on the surface of catheter, with consequent formation of antibacterial silver nanoparticles. Aim of this work is the structural and morphological characterization of these medical devices in order to analyze the distribution and the size of clusters on the polymeric surface, and to verify the antibacterial capability of the devices treated by this technique against bacterial proliferation. The structure and morphology of the silver nanoparticles were investigated by using scanning and transmission electron microscopy. The antimicrobial capability of the catheters after silver deposition was confirmed by antibacterial tests with Escherichia coli. Both scanning electron microscopy analysis and antibacterial tests were performed also after washing catheters for 30 days in deionized water at 37°C, relating these data to thermogravimetric analysis and to energy dispersive spectroscopy, in order to check the resistance of coating and its antimicrobial capability after the maximum time of life of these devices.
Research on the nanomaterials containing\ud one or more transition metals is growing tremendously,\ud thanks to the large number of preparation processes available\ud and to the novel applications that can be envisaged\ud in several fields. This review presents an overview of\ud the selected studies in the field of antimicrobial textiles,\ud employing bioactive nanophases of elements/compounds\ud such as silver, copper, or zinc oxide. In addition, the history\ud of use of these antimicrobials and their mechanism\ud of action are shortly reported. Finally, a short description\ud is provided of the deposition/preparation methods, which\ud are being used in the authors ’ labs for the development\ud of the textiles modified by the novel nanoantimicrobial
The infections give rise to a range of clinical problems and prolong hospitalization with increased healthcare costs. Moreover, persistent infections exasperate the problem of antibiotic resistance. The aim of this study was the development of effective and low-cost antibacterial silver coatings on surgical sutures by adopting an innovative photochemical deposition process to prevent early contamination of surgical wounds. The silver deposition technology adopted in this work is an innovative process based on the in situ photoreduction of a silver solution. The samples were dipped in the silver solution and then exposed to UV radiation in order to induce the synthesis of silver clusters on the surface of the suture. The homogeneous distribution of silver particles on the surface and on the cross-section of the treated sutures was demonstrated. All the antibacterial studies clearly demonstrated that the use of novel silver treated sutures could represent clinical advantages in terms of the prevention of surgical infections against bacterial colonization. The silver coating deposited on the sutures demonstrated no cytotoxic effect on a selected cell population. The results obtained suggested that the antibacterial silver-coated sutures developed in this work could represent an interesting alternative to conventional sutures, with evident advantages in terms of prevention of the surgical infections and on the health costs. In addiction, very low concentrations of silver significantly inhibited the microbial load, without affecting the cell viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.