This paper presents the development of a low-order three-dimensional through-flow code created at Cranfield University in the UK, named ACROSS (Axial Compressor Rotating Stall and Surge simulator), and its application to create the reverse flow and rotating stall characteristics of a modern high-speed compressor. The compressor modelled is a six-stage axial-flow machine, representative of a modern aero-engine highpressure compressor. The tool has been previously validated using experimental data from two low-speed compressor rigs. This article describes how the tool's robustness and computational speed have been improved by introducing higher-order schemes to model the circumferential fluxes and the rigid movement of the flow in the rotating blade rows. Further improvements include variable axial discretization, an algorithm to introduce random flow perturbations in the flow field and an improved plenum model. The compressor is first modelled in reverse flow conditions to create its reverse-flow characteristics and these are then compared against results from high-fidelity 3D CFD simulations. Results obtained suggest that despite the presence of three-dimensional flow features, 2D axi-symmetric simulations are adequate to generate the full range of reverse flow characteristics of the compressor. The rotating stall characteristics at 77% and 100% corrected rotational speed are created by modelling several steady rotating stall cases in 3D. Using the code ACROSS, the complete map of the compressor modelled, comprising of forward flow, reverse flow and rotating stall characteristics, was created in only 5 days using 3 desktop workstations. For comparison, state-of-the-art high-fidelity 3D CFD requires several days to simulate a single rotating stall case on a high performance computing facility.
AbstractThis paper describes the application of low-order models to the prediction of the steady performance of axial compressors at sub-idle conditions. An Euler body-force method employing sub-idle performance correlations is developed and presented alongside a mean-line approach employing the same set of correlations. The low-order tools are used to generate the characteristic lines of the compressor in the locked-rotor and zero-torque windmilling conditions. The results are compared against steady-state operating points from three-dimensional (3D) Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) simulations. The accuracy of the low-order tools in reproducing the results from high-fidelity CFD is analysed, and the trade-off with the computational cost of each method is discussed. The low-order tools presented are shown to offer a fast alternative to traditional CFD which can be used to predict the performance in sub-idle conditions of a new compressor design during early development stages.
Life-threatening necrotizing fasciitis and relapsing Lemierre syndrome associated with Fusobacterium necrophorum septicaemia occurred in young adults with a moderate Chron's disease and a missed profound IgA deficiency. This unexpected association of a chronic bowel inflammatory syndrome with prominent IgA abnormalities and severe bacterial infection deserves careful attention by physicians faced with young patients with Chron's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.