Austenitic stainless steels (ASS) are corrosion resistant alloys in which the desirable mechanical properties may be attained by cold working in the final stages of the fabrication process. This manufacturing process may induce martensitic transformation from the austenitic phase, where the chemical composition plays an important role as it influences the stacking fault energy (SFE). Therefore, this work evaluated the influence of carbon content on martensitic transformation of Ti stabilized ASS. Thus, the austenite transformed into martensite by cold rolling was observed by Light Optical Microscopy (LOM) and quantified by Vibrating Sample Magnetometer (VSM), and X-Ray Diffraction (XRD) for Ti stabilized ASS with different carbon contents. The experimental results about the martensitic transformation behavior for each alloy were compared with previous results on other ASS and Duplex Stainless Steel (DSS), tested in similar conditions, verifying a high correlation with a sigmoidal model previously applied in these alloys. Additionally, it was carried out a SFE analysis, estimated by thermodynamic model, corroborating that the alloy's carbon content has a strong influence on the material's stability. Finally, it was observed a sudden increase in microhardness value as a consequence of the high amount of austenite transformed into martensite at very low strains that might affect the steels performance in several applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.