We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a ‘hands-on’ approach, providing practical details and procedures as derived from literature as well as from the authors’ experience, in order to enable the reader to reproduce the results. Section is devoted to ‘bottom up’ approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section covers ‘top down’ techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers’ and modified Hummers’ methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by ...
Point-contact Andreev reflection spectroscopy (PCAR) has proven to be one of the most powerful tools in the investigation of superconductors, where it provides information on the order parameter (OP), a fundamental property of the superconducting state. In the past 20 years, successive improvements of the models used to analyze the spectra have continuously extended its capabilities, making it suited to study new superconductors with "exotic" properties such as anisotropic, nodal and multiple OPs. In Fe-based superconductors, the complex compound-and doping-dependent Fermi surface and the predicted sensitivity of the OP to fine structural details present unprecedent challenges for this technique. Nevertheless, we show here that PCAR measurements in Fe-based superconductors carried out so far have already greatly contributed to our understanding of these materials, despite some apparent inconsistencies that can be overcome if a homogeneous treatment of the data is used. We also demonstrate that, if properly extended theoretical models for Andreev reflection are used, directional PCAR spectroscopy can provide detailed information not only on the amplitude and symmetry of the OPs, but also on the nature of the pairing boson, and even give some hints about the shape of the Fermi surface.
a b s t r a c tA review of our investigations on single crystals of LnFeAsO 1Àx F x (Ln = La, Pr, Nd, Sm, Gd) and Ba 1Àx -Rb x Fe 2 As 2 is presented. A high-pressure technique has been applied for the growth of LnFeAsO 1Àx F x crystals, while Ba 1Àx Rb x Fe 2 As 2 crystals were grown using a quartz ampoule method. Single crystals were used for electrical transport, structure, magnetic torque and spectroscopic studies. Investigations of the crystal structure confirmed high structural perfection and show incomplete occupation of the (O, F) position in superconducting LnFeAsO 1Àx F x crystals. Resistivity measurements on LnFeAsO 1Àx F x crystals show a significant broadening of the transition in high magnetic fields, whereas the resistive transition in Ba 1Àx Rb x Fe 2 As 2 simply shifts to lower temperature. The critical current density for both compounds is relatively high and exceeds 2 Â 10 9 A/m 2 at 15 K in 7 T. The anisotropy of magnetic penetration depth, measured on LnFeAsO 1Àx F x crystals by torque magnetometry is temperature dependent and apparently larger than the anisotropy of the upper critical field. Ba 1Àx Rb x Fe 2 As 2 crystals are electronically significantly less anisotropic. Point-Contact Andreev-Reflection spectroscopy indicates the existence of two energy gaps in LnFeAsO 1Àx F x . Scanning Tunneling Spectroscopy reveals in addition to a superconducting gap, also some feature at high energy ($20 meV).
Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ≃ Ω(b)(0).
The experimental critical temperatures and gap values of the superconducting pnictides of both the 1111 and 122 families can be simultaneously reproduced within the Eliashberg theory by using a three-band model where the dominant role is played by interband interactions and the order parameter undergoes a sign reversal between hole and electron bands (s±-wave symmetry). High values of the electron-boson coupling constants and small typical boson energies (in agreement with experiments) are necessary to obtain the values of all the gaps and to correctly reproduce their temperature dependence.PACS numbers: 74.70. Dd, 74.20.Fg, 74.20.Mn The recently discovered Fe-based pnictide superconductors [1,2,3] have aroused great interest in the scientific community. They have indeed shown that high T c superconductivity does not uniquely belong to cuprates but can take place in Cu-free systems as well. Nevertheless, as in cuprates, superconductivity occurs upon charge doping of a magnetic parent compound above a certain critical value. However, important differences exist: the parent compound in cuprates is a Mott insulator with localized charge carriers and a strong Coulomb repulsion between electrons; in the pnictides, on the other hand, it is a bad metal and shows a tetragonal to orthorhombic structural transition below ≈ 140 K, followed by an antiferromagnetic (AF) spin-density-wave (SDW) order [4]. Charge doping gives rise to superconductivity and, at the same time, inhibits the occurrence of both the static magnetic order and the structural transition. The Fermi surface consists of two or three hole-like sheets around Γ and two electron-like sheets around M . Up to now, the most intensively studied systems are the 1111 compounds, ReFeAsO 1−x F x (Re = La, Sm, Nd, Pr, etc.) and especially the 122 ones, hole-or electron-doped AFe 2 As 2 (A = Ba, Sr, Ca). The huge amount of experimental work already done in 122 compounds is due to the availability of rather big high-quality single crystals.Most of the present research effort is spent clarifying the microscopic pairing mechanism responsible for superconductivity. The conventional phonon-mediated coupling mechanism cannot explain the observed high T c within standard Migdal-Eliashberg theory and the inclusion of multiband effects increases T c only marginally [5]. On the other hand, the magnetic nature of the parent compound seems to favor a magnetic origin of superconductivity and a coupling mechanism based on nestingrelated AF spin fluctuations has been proposed [6]. It predicts an interband sign reversal of the order parameter between different sheets of the Fermi surface (s± symmetry). The number, amplitude and symmetry of the superconducting energy gaps are indeed fundamental physical quantities that any microscopic model of superconductivity has to account for. Experiments with powerful techniques such as ARPES, point-contact spectroscopy, STM etc., have been carried out to study the superconducting gaps in pnictides (for a review see [7]). Although results are so...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.