Quantum metrology is one of the most promising applications of quantum technologies. The aim of this research field is the estimation of unknown parameters exploiting quantum resources, whose application can lead to enhanced performances with respect to classical strategies. Several physical quantum systems can be employed to develop quantum sensors, and photonic systems represent ideal probes for a large number of metrological tasks. Here, the authors review the basic concepts behind quantum metrology and then focus on the application of photonic technology for this task, with particular attention to phase estimation. The authors describe the current state of the art in the field in terms of platforms and quantum resources. Furthermore, the authors present the research area of multiparameter quantum metrology, where multiple parameters have to be estimated at the same time. The authors conclude by discussing the current experimental and theoretical challenges and the open questions toward implementation of photonic quantum sensors with quantum-enhanced performances in the presence of noise.
Multiparameter estimation is a general problem that aims at measuring unknown physical quantities, obtaining high precision in the process. In this context, the adoption of quantum resources promises a substantial boost in the achievable performances with respect to the classical case. However, several open problems remain to be addressed in the multiparameter scenario. A crucial requirement is the identification of suitable platforms to develop and experimentally test novel efficient methodologies that can be employed in this general framework. We report the experimental implementation of a reconfigurable integrated multimode interferometer designed for the simultaneous estimation of two optical phases. We verify the high-fidelity operation of the implemented device, and demonstrate quantum-enhanced performances in two-phase estimation with respect to the best classical case, post-selected to the number of detected coincidences. This device can be employed to test general adaptive multiphase protocols due to its high reconfigurability level, and represents a powerful platform to investigate the multiparameter estimation scenario.
Photon entanglement is an important state of light that is at the basis of many protocols in photonic quantum technologies, from quantum computing, to simulation and sensing. The capability to generate entangled photons in integrated waveguide sources is particularly advantageous due to the enhanced stability and more efficient light-crystal interaction. Here we realize an integrated optical source of entangled degenerate photons at telecom wavelength, based on the hybrid interfacing of photonic circuits in different materials, all inscribed by femtosecond laser pulses. We show that our source, based on spontaneous parametric down-conversion, gives access to different classes of output states, allowing to switch from path-entangled to polarization-entangled states with net visibilities above 0.92 for all selected combinations of integrated devices. * These authors contributed equally. †
Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication. Distribution of photonic entangled states using optical fiber links is a fundamental building block towards quantum networks. Among the different degrees of freedom, orbital angular momentum (OAM) is one of the most promising due to its natural capability to encode high dimensional quantum states. In this article, we experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs. To this end, we exploit a recently developed air-core fiber which supports OAM modes. High fidelity distribution of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM Hilbert space after fiber propagation, and by violations of Bell inequalities and multipartite entanglement tests. The present results open new scenarios for quantum applications where correlated complex states can be transmitted by exploiting the vectorial nature of light.
The launch of a satellite capable of distributing entanglement through long distances and the first loophole-free violation of Bell inequalities are milestones indicating a clear path for the establishment of quantum networks. However, nonlocality in networks with independent entanglement sources has only been experimentally verified in simple tripartite networks, via the violation of bilocality inequalities. Here, by using a scalable photonic platform, we implement star-shaped quantum networks consisting of up to five distant nodes and four independent entanglement sources. We exploit this platform to violate the chained n-locality inequality and thus witness, in a device-independent way, the emergence of nonlocal correlations among the nodes of the implemented networks. These results open new perspectives for quantum information processing applications in the relevant regime where the observed correlations are compatible with standard local hidden variable models but are nonclassical if the independence of the sources is taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.