BackgroundType II diabetes is a chronic health condition which is associated with skin conditions including chronic foot ulcers and an increased incidence of skin infections. The skin microbiome is thought to play important roles in skin defence and immune functioning. Diabetes affects the skin environment, and this may perturb skin microbiome with possible implications for skin infections and wound healing. This study examines the skin and wound microbiome in type II diabetes.MethodsEight type II diabetic subjects with chronic foot ulcers were followed over a time course of 10 weeks, sampling from both foot skin (swabs) and wounds (swabs and debrided tissue) every two weeks. A control group of eight control subjects was also followed over 10 weeks, and skin swabs collected from the foot skin every two weeks. Samples were processed for DNA and subject to 16S rRNA gene PCR and sequencing of the V4 region.ResultsThe diabetic skin microbiome was significantly less diverse than control skin. Community composition was also significantly different between diabetic and control skin, however the most abundant taxa were similar between groups, with differences driven by very low abundant members of the skin communities. Chronic wounds tended to be dominated by the most abundant skin Staphylococcus, while other abundant wound taxa differed by patient. No significant correlations were found between wound duration or healing status and the abundance of any particular taxa.DiscussionThe major difference observed in this study of the skin microbiome associated with diabetes was a significant reduction in diversity. The long-term effects of reduced diversity are not yet well understood, but are often associated with disease conditions.
Summary. Background: Experimental animal studies have shown that the intimal hyperplasia (IH) responsible for occlusion after successful revascularization procedures may be partially caused by a bone marrow-derived cell that migrates to the site of vascular injury. Concurrent studies have demonstrated an extensive role in wound healing for the circulating fibrocyte. Objectives: We aimed to trace the path of the circulating cell that contributes to IH and determine if it is the fibrocyte. Methods and results: We established an in vitro model whereby purified monocytes from six healthy human volunteers were cultured into fibrocytes. These cells were morphometrically similar to the vascular smooth muscle cell (VSMC) found in IH and expressed alpha-smooth muscle actin (a-SMA) as well as CD34, CD45 and Collagen I (Col I), markers indicative of the fibrocyte. In an in vivo ovine carotid artery synthetic patch graft model, carboxyfluorescein diacetate, succinimidyl ester (CFSE) labeled circulating leukocytes were observed throughout the graft as well as in the neointima in 18 sheep. These cells were shown to produce collagen and a-SMA at 1, 2 and 4 weeks. These cells then underwent immunohistochemical analysis and were found to express a set of markers unique to the fibrocyte (CD34, CD45, Vimentin and a-SMA) and also to double stain for CD34 and a-SMA. Conclusions: IH in an ovine carotid artery patch graft model is partially derived from a hematopoietic circulating progenitor cell that acquires mesenchymal features as it matures at the site of injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.