The continuous population increase of older adults with metabolic diseases may contribute to increased prevalence of sarcopenia and obesity and requires advocacy of optimal nutrition treatments to combat their deleterious outcomes. Sarcopenic obesity, characterized by age-induced skeletal-muscle atrophy and increased adiposity, may accelerate functional decline and increase the risk of disability and mortality. In this review, we explore the influence of dietary protein on the gut microbiome and its impact on sarcopenia and obesity. Given the associations between red meat proteins and altered gut microbiota, a combination of plant and animal-based proteins are deemed favorable for gut microbiota eubiosis and muscle-protein synthesis. Additionally, high-protein diets with elevated essential amino-acid concentrations, alongside increased dietary fiber intake, may promote gut microbiota eubiosis, given the metabolic effects derived from short-chain fatty-acid and branched-chain fatty-acid production. In conclusion, a greater abundance of specific gut bacteria associated with increased satiation, protein synthesis, and overall metabolic health may be driven by protein and fiber consumption. This could counteract the development of sarcopenia and obesity and, therefore, represent a novel approach for dietary recommendations based on the gut microbiota profile. However, more human trials utilizing advanced metabolomic techniques to investigate the microbiome and its relationship with macronutrient intake, especially protein, are warranted.
This randomized, single-masked, controlled trial examined the effects of nutrient-fortified milk-based formula supplementation on nutritional status, nutrient intake, and psychomotor skills of selected preschool children with mean age of 4.10 ± 0.14 years. The study participants were divided equally into three major groups, normal, underweight, and severely underweight based on WHO-Child Growth Standards, and were further divided into two groups: fortified milk group who was given two glasses of fortified milk (50 g of powdered milk/serving) a day for twelve weeks in addition to their usual diet and the nonintervention group who was not given fortified milk and thus maintained their usual intake. Anthropometric measurements, dietary intake, and psychomotor developmental score were analyzed. Results showed that consumption of two servings of fortified milk a day for twelve weeks significantly increased the height of preschool children by 1.40 cm, weight by 1.35 kg, body mass index by 0.96 kg/m2, mid-upper arm circumference by 0.66 cm, and psychomotor scores by 13.74% more than those children who did not consume fortified milk (p < 0.0001). Hence, fortified milk-based supplement in the diet of preschool children improved overall nutritional status, nutrient intake, and performance in psychomotor scale. This study is registered in Philippine Health Research Registry: PHRR140923-000234.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.