Currently, there is an increasing demand for the diagnostic techniques that provide functional and morphological information with early cancer detection capability. Novel modern medical imaging systems driven by the recent advancements in technology such as terahertz (THz) and infrared radiation-based imaging technologies which are complementary to conventional modalities are being developed, investigated, and validated. The THz cancer imaging techniques offer novel opportunities for label free, non-ionizing, non-invasive and early cancer detection. The observed image contrast in THz cancer imaging studies has been mostly attributed to higher refractive index, absorption coefficient and dielectric properties in cancer tissue than that in the normal tissue due the local increase of the water molecule content in tissue and increased blood supply to the cancer affected tissue. Additional image contrast parameters and cancer biomarkers that have been reported to contribute to THz image contrast include cell structural changes, molecular density, interactions between agents (e.g., contrast agents and embedding agents) and biological tissue as well as tissue substances like proteins, fiber and fat etc. In this paper, we have presented a systematic and comprehensive review of the advancements in the technological development of THz technology for cancer imaging applications. Initially, the fundamentals principles and techniques for THz radiation generation and detection, imaging and spectroscopy are introduced. Further, the application of THz imaging for detection of various cancers tissues are presented, with more focus on the in vivo imaging of skin cancer. The data processing techniques for THz data are briefly discussed. Also, we identify the advantages and existing challenges in THz based cancer detection and report the performance improvement techniques. The recent advancements towards THz systems which are optimized and miniaturized are also reported. Finally, the integration of THz systems with artificial intelligent (AI), internet of things (IoT), cloud computing, big data analytics, robotics etc. for more sophisticated systems is proposed. This will facilitate the large-scale clinical applications of THz for smart and connected next generation healthcare systems and provide a roadmap for future research.
There is a keen interest in the exploration of new generation emitters and detectors due to advancements in innovation of new materials and device processing technologies which have opened up new frontiers in the Terahertz (THz) spectrum. Therefore, it is necessary to review the developments in THz technology for healthcare applications, their impact, implications and prospects for ongoing research and development. This paper provides a broad overview of the current status and prospects of application of THz imaging and sensing for the healthcare domain. We present current knowledge, identify existing challenges for wide scale clinical adoption of THz systems and prospective opinions to facilitate research and development towards optimized and miniaturized THz systems and biosensors that provide real operational convenience through emerging trends. Firstly, we provide an overview of the THz imaging and sensing techniques that exploit properties of THz generation and detection with emphasis on terahertz time domain spectroscopy (THz-TDS) and THz Metamaterials. The mechanisms of tissue image contrast and the application of THz imaging and sensing for biomedical applications in particular, the cancer detection application is reported. Secondly, an outlook toward the advancements in THz technology in the interface of healthcare 4.0 and its enabling technologies is explored for next generation smart and connected healthcare systems. Third, we identify the merits and existing challenges in THz cancer imaging and sensing and suggest prospective opinions to pave way to ongoing and future research. Further, we discuss the recent advances in THz imaging development and the contribution of near-field techniques based on plasmonic, and resonance based metasurfaces, waveguides etc. for breaking the diffraction limit towards development of THz systems that are convenient for point of care. We bring researchers a roadmap for future research scope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.