Methamphetamine (METH) is a highly addictive psycho-stimulant that induces behavioral changes due to high level of METH-induced dopamine in the brain. Nucleus accumbens (NAc) plays an important role in these changes, especially in drug addiction. However, little is known about the underlying molecular mechanisms of METH-induced addiction. The objective of this study was to establish a behavioral model of METH use and addiction using escalating doses of METH over 15 days and to determine the global miRNA expression profiling in NAc of METH-addicted rats. In the behavioral study, the experimental rats were divided into 3 groups of 9 each: a control group, a single dose METH (5 mg/kg) treatment group and a continuous 15 alternate days METH (0.25, 0.5, 1, 2, 3, 4, 5 mg/kg) treatment group. Following that, six rats in each group were randomly selected for global miRNA profiling. Addiction behavior in rats was established using Conditioned Place Preference task. The analysis of the miRNA profiling in the NAc was performed using Affymetric microarray GeneChip® System. The findings indicated that a continuous 15 alternate days METH treatment rats showed a preference for the drug-paired compartment of the CPP. However, a one-time acute treatment with 5 mg/kg METH did not show any significant difference in preference when compared with controls. Differential profiling of miRNAs indicated that 166 miRNAs were up-regulated and 4 down-regulated in the chronic METH-treatment group when compared to controls. In comparing the chronic treatment group with the acute treatment group, 52 miRNAs were shown to be up-regulated and 7 were down-regulated. MiRNAs including miR-496-3p, miR-194-5p, miR-200b-3p and miR-181a-5p, were found to be significantly associated with METH addiction. Canonical pathway analysis revealed that a high number of METH addiction-related miRNAs play important roles in the MAPK, CREB, G-Protein Couple Receptor and GnRH Signaling pathways. Our results suggest that dynamic changes occur in the expression of miRNAs following METH exposure and addiction.
The rising trend of gastrointestinal (GI) cancer has become a global burden due to its aggressive nature and poor prognosis. Long noncoding RNAs (lncRNAs) have recently been reported to be overexpressed in different GI cancers and may contribute to cancer progression and chemoresistance. They are featured with more than 200 nucleotides, commonly polyadenylated, and lacking an open reading frame. LncRNAs, particularly urothelial carcinoma-associated 1 (UCA1), are oncogenes involved in regulating cancer progression, such as cell proliferation, invasion, migration, and chemoresistance, particularly in GI cancer. This review was aimed to present an updated focus on the molecular regulatory roles and patterns of lncRNA UCA1 in progression and chemoresistance of different GI cancers, as well as deciphering the underlying mechanisms and its interactions with key molecules involved, together with a brief presentation on its diagnostic and prognostic values. The regulatory roles of lncRNA UCA1 are implicated in esophageal cancer, gastric cancer, pancreatic cancer, hepatobiliary cancer, and colorectal cancer, where they shared similar molecular mechanisms in regulating cancer phenotypes and chemoresistance. Comparatively, gastric cancer is the most intensively studied type in GI cancer. LncRNA UCA1 is implicated in biological roles of different GI cancers via interactions with various molecules, particularly microRNAs, and signaling pathways. In conclusion, lncRNA UCA1 is a potential molecular target for GI cancer, which may lead to the development of a novel chemotherapeutic agent. Hence, it also acts as a potential diagnostic and prognostic marker for GI cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.