Vermicompost is the product of composting or breaking down organic matter through the use of earthworms. It is rich in essential plant nutrients, and has the ability to enhance the condition and increase the quality of the soil. In the present study, a field trial was conducted from January 2015 until March 2016 to elucidate the effects of vermicompost application (compared to supplementation with chemical fertilizer and no fertilizer) on the sandy loam soil and plant nutrients of pineapple (Ananas comosus var. MD2). The morphophysiology and yield performance of MD2 pineapple grown with vermicompost in the field were also evaluated. In this study, vermicompost was applied onto the sandy loam soils during transplanting, followed by a second application at seven MAP (months after planting) at the rate of 10 t ha−1. On the other hand, the chemical fertilizer was applied based on the normal conventional cultivation practice. The soil and D-leaf samples at six MAP (S1) and during the red bud stage (S2; 10 MAP) were used to determine the soil and plant nutrient contents. The morphology of the plants was evaluated every month, and the fruits that were produced were subjected to quality analysis. Data analysis revealed that soil pH was increased after a second supplementation of vermicompost and contained significantly higher total N (0.15%) in the soils compared to the control (0.07%). There was no significant difference between plants supplied with chemical fertilizer and vermicompost in terms of plant height, number of leaves, or the length and width of D-leaves. However, different fertilization treatments were found to affect the yield and physical characteristics of the resulting fruits. Plants supplied with chemical fertilizer produced the highest fruit yield (136.97 t ha−1) with the largest fruit size, followed by vermicompost (121.39 t ha−1) and the control (94.93 t ha−1). However, fruits supplied with vermicompost were observed to have the smallest crowns. Taken together, these results indicated that the use of vermicompost produced pineapple plants with excellent growth performance, comparable to that obtained when chemical fertilizer was used. Also, based on the cost analysis conducted, it was shown that the total cost (fertilizer and labor) for plants grown with vermicompost was lower than plants grown with chemical fertilizer. However, the usage of vermicompost as the single source of nutrients is not suggested for this type of soil and field conditions, but can be used as a supplement to maintain the soil quality and ensure agricultural sustainability.
Vermicompost is a nutrient-rich organic waste produced from earthworms that is beneficial in enhancing the soil condition and has been reported to aid in improving the crop yield and quality. In the present study, a field trial was conducted using a randomized complete block design with four replicates to elucidate the effects of vermicompost application (compared to supplementation with chemical fertilizer and no fertilizer) on the productivity of ex vitro MD2 pineapple plants. Vermicompost was applied on the sandy loam soils at transplanting followed by a second application at 7 months after planting (MAP) at the rate of 10 t·ha−1, while chemical fertilizer was applied based on the recommended cultivation practice. Data analysis revealed that there was no significant difference between the plants treated with vermicompost and chemical fertilizer in terms of the plant height, number of leaves, length and width of D-leaves, stomatal density and stomatal size. However, the fruits produced with vermicompost amendment were smaller in size but contained higher total soluble solids, titratable acidity, total solids, ascorbic acid and total chlorophyll content compared to the fruits produced from plants supplied with chemical fertilizer. Based on the DPPH, ABTS and FRAP assays, the methanolic fruit extracts from the control plants showed the highest antioxidant potential, followed by those of plants treated with vermicompost and chemical fertilizer. On the other hand, the application of vermicompost reduced soil acidity and produced macro- and micronutrient contents (N, P, K, Mg, Ca, S, Fe, Zn, B and Al) in the soil and plants that were comparable to or higher than those produced by the chemical fertilizer treatment. However, some of the nutrient contents observed in all treatments were lower than the recommended range for pineapple plant growth, suggesting that vermicompost or chemical fertilizer should not be used alone as a source of nutrients for ex vitro MD2 pineapple plants under these soil and field conditions. However, vermicompost can be used as a supplement to increase the fruit chemical quality and maintain the soil quality for agricultural sustainability.
Vermicompost is an organic waste produced from earthworms that can enhance the soil condition and is rich with essential plant nutrients, thus increasing produce quality and shelf life. In this study, a one-year field trial was conducted to elucidate the effects of vermicompost supplementation on the composition of bioactive compounds and antioxidant activities of pineapple (Ananas comosus var. MD2) fruits, compared to control and application of chemical fertilizer. Based on the results, pineapple fruits produced from plants supplemented with chemical fertilizer showed the strongest radical scavenging properties against 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), followed by vermicompost and control plants. Application of chemical fertilizer and vermicompost also produced fruits with a very high content of chlorophylls and β-carotene compared to control plants. However, the amounts of bioactive compounds present in fruits produced with chemical fertilizer are higher than in fruits produced with vermicompost. Total phenolics content and Ferric Reducing Antioxidant Power (FRAP) reducing power were lowest in fruit extracts produced from pineapple plants supplemented with vermicompost. These results suggested that vermicompost cannot completely replace chemical fertilizer for the production of fruits with a high content of phytoconstituents but could be used as an additional supplement to reduce environmental pollution and ensure agricultural sustainability.
Ten cultivars of tomato were evaluated on the basis of days to flowering, fruit setting and maturity period, number and weight of fruit per plant, length and width of fruit, average fruit weight, plant height and yield. The cultivars Nova Mech, Early Mech, Chico III, Nadir, Tanja and Sorrento were early in maturity whereas 'Samarzano' was a late maturing. The cultivar Tanja produced maximum fruit weight per plant (1.55 Kg) and gave the highest yield of 41.45 t /ha . It was followed by Chico-III and Sorrento which exhibited average yields of 40.32 and 39.13 t/ha respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.