Abstract. The early detection of Alzheimer's disease (AD) is a key step to accelerate the development of new therapies and to diminish the associated socio-economic burden. To address this challenging problem, several biomarkers based on MRI have been proposed. Although numerous efforts have been devoted to improve MRI-based feature quality or to increase machine learning methods accuracy, the current AD prognosis accuracy remains limited. In this paper, we propose to combine both high quality biomarkers and advanced learning method. Our approach is based on a robust ensemble learning strategy using gray matter grading. The estimated weak classifiers are then fused into high informative anatomical sub-ensembles. Through a sparse logistic regression, the most relevant anatomical sub-ensembles are selected, weighted and used as input to a global classifier. Validation on the full ADNI1 dataset demonstrates that the proposed method obtains competitive results of prediction of conversion to AD in the Mild Cognitive Impairment group with an accuracy of 75.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.