To elucidate the dehydrogenation mechanism of dodecahydro-N-ethylcarbazole (H(12)-NEC) on supported Pd catalysts, we have performed a model study under ultra high vacuum (UHV) conditions. H(12)-NEC and its final dehydrogenation product, N-ethylcarbazole (NEC), were deposited by physical vapor deposition (PVD) at temperatures between 120 K and 520 K onto a supported model catalyst, which consisted of Pd nanoparticles grown on a well-ordered alumina film on NiAl(110). Adsorption and thermally induced surface reactions were followed by infrared reflection absorption spectroscopy (IRAS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) in combination with density functional theory (DFT) calculations. It was shown that, at 120 K, H(12)-NEC adsorbs molecularly both on the Al(2)O(3)/NiAl(110) support and on the Pd particles. Initial activation of the molecule occurs through C-H bond scission at the 8a- and 9a-positions of the carbazole skeleton at temperatures above 170 K. Dehydrogenation successively proceeds with increasing temperature. Around 350 K, breakage of one C-N bond occurs accompanied by further dehydrogenation of the carbon skeleton. The decomposition intermediates reside on the surface up to 500 K. At higher temperatures, further decay to small fragments and atomic species is observed. These species block most of the absorption sites on the Pd particles, but can be oxidatively removed by heating in oxygen at 600 K, fully restoring the original adsorption properties of the model catalyst.
Dodecahydro-N-ethylcarbazole (H12-NEC) has been proposed as a potential liquid organic hydrogen carrier (LOHC) for chemical energy storage, as it combines both favourable physicochemical and thermodynamic properties. The design of optimised dehydrogenation catalysts for LOHC technology requires a detailed understanding of the reaction pathways and the microkinetics. Here, we investigate the dehydrogenation mechanism of H12-NEC on Pd(111) by using a surface-science approach under ultrahigh vacuum conditions. By combining infrared reflection-absorption spectroscopy, density functional theory calculations and X-ray photoelectron spectroscopy, surface intermediates and their stability are identified. We show that H12-NEC adsorbs molecularly up to 173 K. Above this temperature (223 K), activation of C-H bonds is observed within the five-membered ring. Rapid dehydrogenation occurs to octahydro-N-ethylcarbazole (H8-NEC), which is identified as a stable surface intermediate at 223 K. Above 273 K, further dehydrogenation of H8-NEC proceeds within the six-membered rings. Starting from clean Pd(111), C-N bond scission, an undesired side reaction, is observed above 350 K. By complementing surface spectroscopy, we present a temperature-programmed molecular beam experiment, which permits direct observation of dehydrogenation products in the gas phase during continuous dosing of the LOHC. We identify H8-NEC as the main product desorbing from Pd(111). The onset temperature for H8-NEC desorption is 330 K, the maximum reaction rate is reached around 550 K. The fact that preferential desorption of H8-NEC is observed even above the temperature threshold for H8-NEC dehydrogenation on the clean surface is attributed to the presence of surface dehydrogenation and decomposition products during continuous reactant exposure.
Towards a better understanding of novel catalytic materials consisting of supported noble metal catalysts modified by an ionic liquid (IL) film, we have performed a study under ultrahigh-vacuum (UHV) conditions. The model surface consists of Pd nanoparticles grown in UHV on an ordered alumina film on NiAl(110). Thin films of the room temperature IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf(2)N] are deposited onto this surface by means of physical vapor deposition (PVD). The interaction of the IL with clean and CO-covered Pd/Al(2)O(3)/NiAl(110) at 300 K and the thermal behavior of the deposited IL films on Pd/Al(2)O(3)/NiAl(110) are investigated by time-resolved infrared reflection absorption spectroscopy (TR-IRAS) and X-ray photoelectron spectroscopy (XPS). At 300 K, the IL adsorbs molecularly both onto the Pd particles and onto the alumina. The IR spectra suggest that the [Tf(2)N](-) anions interact with Pd sites preferentially via the sulfonyl groups. CO pre-adsorbed on the Pd particles is partially displaced by the IL, even at 300 K, and only the part of CO adsorbed onto hollow sites on (111) facets of the Pd particles remains in place. Upon heating to temperatures higher than the desorption temperature of the IL (>400 K), molecular desorption of the IL competes with decomposition. The decomposition products, atomic species and small fragments, remain preferentially adsorbed onto the Pd nanoparticles and strongly modify their surface properties. Most of the decomposition products originate from the [BMIM](+) cations, whereas the [Tf(2)N](-) anions desorb for the most part.
Sloshing hydrogen: Liquid organic hydrogen carriers are high-boiling organic molecules, which can be reversibly hydrogenated and dehydrogenated in catalytic processes and are, therefore, a promising chemical hydrogen storage material. One of the promising candidates is the pair N-ethylcarbazole/perhydro-N-ethylcarbazole (NEC/H₁₂-NEC). The dehydrogenation and possible side reactions on a Pt(111) surface are evaluated in unprecedented detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.