A fully automatic, compiler-driven approach to parallelisation can result in unpredictable time and space costs for compiled code. On the other hand, a fully manual approach to parallelisation can be long, tedious, prone to errors, hard to debug, and often architecturespecific. We present a declarative domain-specific language, Ypnos, for expressing structured grid computations which encourages manual specification of causally sequential operations but then allows a simple, predictable, static analysis to generate optimised, parallel implementations. We introduce the language and provide some discussion on the theoretical aspects of the language semantics, particularly the structuring of computations around the category theoretic notion of a comonad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.