Durch steigende Anforderungen des modernen Bahnverkehrs (vor allem durch höhere Achslasten und Zugfrequenzen) werden Bahnbrücken immer stärker beansprucht. Entsprechend muss die Trag‐ und Ermüdungssicherheit dieser Brücken nachgewiesen werden. Dies erfolgt über eine so genannte Aktualisierung, indem die effektiv auftretende Beanspruchung des Brückentragwerks genau ermittelt wird.Im Rahmen eines Pilotprojekts werden zurzeit zerstörungsfreie, statische und dynamische Belastungsversuche an der Bahnbrücke Eglisau, Schweiz, durchgeführt, um Informationen zu erhalten, auf deren Basis zuverlässige Aussagen zur Tragsicherheit und Ermüdungssicherheit gemacht werden sollen. Im laufenden Bahnbetrieb ist die eingleisig befahrene Bahnbrücke schwer zugänglich, weshalb die Langzeitmessungen mit Hilfe eines festinstallierten, vollautomatischen Bauwerk‐Monitoring‐Systems (swissMon) durchgeführt werden. Mit Hilfe dieses Systems können beliebig viele, unterschiedliche Messsensoren zyklisch oder getriggert durch das Überfahren eines Zuges betrieben werden. Die mit swissMon gewonnen Daten sind eine verlässliche Grundlage für weitere Analysen und Modellrechnungen und unterstützen die beteiligten Tragwerksingenieure insbesondere bei der Beurteilung der Ermüdungssicherheit.Fatigue design of bridges – Part 1: Motive, intent and measuring concept of the Swiss monitoring‐study “Railway Bridge Eglisau. Due to increasing requirements of modern railways (higher load per axle, higher train frequencies etc.) higher loads are drawn on railway bridges in the present. A pilot study has been carried out to capture non‐intrusive static and dynamic load tests on a railway bridge at Eglisau, Switzerland. The tests have provided reliable data needed to produce a meaningful report presenting the current and predicted structural safety, serviceability and structural fatigue of the bridge. The single track railway bridge provides limited access when in operation. Therefore, a fully automated construction monitoring system (swissMon) was installed onto the bridge to continuously supply remote measurement data throughout the monitoring period. The system was used to program multiple sensors and sensor types to record measurements at regular time intervals or to trigger the sensors upon the passing of a train. The data obtained from swissMon provided the fundamental reliable information required to carry out further analysis and modeling to support the expert engineers‘ structural assessment of the single track railway bridge at Eglisau.
Bei der genieteten Rheinbrücke in Eglisau wurde über einen Zeitraum von einem Jahr ein Monitoring durchgeführt. Die mittels Rainflow‐Analyse ausgewerteten Messwerte dienten als Grundlage für den Nachweis der Ermüdungssicherheit. Die Messquerschnitte sind in der Regel nicht identisch mit den Nachweisquerschnitten, weshalb die gemessenen Dehnungen bzw. Spannungen in die für den Nachweis maßgebende Nietlage des Nachweisquerschnittes umgerechnet wurden. Die hierfür erforderlichen Umrechnungsfaktoren wurden rechnerisch am statischen Modell ermittelt. In einem ersten Schritt wurde die Dauerfestigkeit für die ermüdungsbeanspruchten Bauteile untersucht. Für die Bauteile mit ungenügender Dauerfestigkeit wurde anschließend eine Schadensakkumulationsberechnung nach Palmgren‐Miner auf Basis der für genietete Konstruktionsdetails geltenden Wöhlerkurven durchgeführt. Basierend auf den Messwerten aus dem Monitoring konnte schließlich für die Nietkonstruktion eine genügende Ermüdungssicherheit und für das maßgebende Bauteil eine weitere Nutzungsdauer von mindestens 50 Jahren nachgewiesen werden. Fatigue safety of riveted bridges – Part 2: Verification based on the monitoring data of the project “Railway Bridge at Eglisau“. Long term monitoring over one year has been conducted on the riveted Railway Bridge over the Rhine at Eglisau. Measured values were exploited by rainflow analysis and served as the basis for the verification of fatigue safety. As the locations of measurements are generally not identical with the cross sections of verification, measured strains respectively stresses, were extrapolated to the relevant verification cross section by means of factors that were obtained by structural analysis. Using these values, all fatigue relevant structural details were first verified with respect to the fatigue limit. Then, damage accumulation calculation according to the Palmgren‐Miner rule and based on Wöhler curves for riveted details was performed for those structural details where the fatigue limit check was not fulfilled. Sufficient fatigue safety could finally be verified for the whole riveted structure and an additional service life of at least 50 years for the most fatigue relevant structural element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.