Many approaches at the forefront of structural health monitoring rely on cutting-edge techniques from the field of machine learning. Recently, much interest has been directed towards the study of so-called adversarial examples; deliberate input perturbations that deceive machine learning models while remaining semantically identical. This article demonstrates that data-driven approaches to structural health monitoring are vulnerable to attacks of this kind. In the perfect information or ‘white-box’ scenario, a transformation is found that maps every example in the Los Alamos National Laboratory three-storey structure dataset to an adversarial example. Also presented is an adversarial threat model specific to structural health monitoring. The threat model is proposed with a view to motivate discussion into ways in which structural health monitoring approaches might be made more robust to the threat of adversarial attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.