The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions.
In this report, we describe the development of a mini-array system suitable for high-throughput quantification of proteins. This mini-array is a multiplexed, sandwich-type ELISA that measures the concentration of seven different human cytokines--TNF-alpha, IFN alpha, IFN gamma, IL-1 alpha, IL-1 beta, IL-6, and IL-10--from a single sample in each well of a 96-well plate. The mini-array is produced by spotting monoclonal antibodies (mAbs) in a 3 x 3 pattern in the bottom of the wells of 96-well polystyrene plates. Cytokines that are captured by the arrayed mAbs are detected by using biotinylated mAbs, followed by the addition of a streptavidin-horseradish peroxidase (HRP) conjugate and a chemiluminescent substrate. The light produced from the HRP-catalyzed oxidation of the substrate is measured at each spot in the array by imaging the entire plate with a commercially available CCD camera. Here, we demonstrate that these 96-well-plate format mini-arrays have performance characteristics that make them suitable for the high-throughput screening of anti-inflammatory compounds.
CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) The production of biologic drugs using mammalian cell production systems offers the benefits of high yield, proper protein folding, and faithful post-translational modifications. However, mammalian cell culture is vulnerable to contamination with adventitious agents, including mouse minute virus (MMV). The case study presented here demonstrates that MMV is a ubiquitous threat to CHO (Chinese hamster ovary) cell-based production of biologic drugs and that animal-free media components can be a contamination source. Compounding the risk posed by MMV, the contamination may be "silent," with no impact on cell viability and product titers. Furthermore, contamination may not be detected using in vitro virus assays, and assays based on PCR (polymerase chain reaction) are required for reliable detection. The development of effective corrective and preventative action (CAPA) was greatly aided by the identification of the source of the contamination as an animal-free recombinant media additive. The execution of a CAPA that included disposal of contaminated materials, decontamination of the facility, and replacement of the contaminated raw material allowed the resumption of MMV-free production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.